Slide 1

Slide 1 text

Prof. Aron Walsh Department of Chemistry University of Bath, UK Materials Science Yonsei University, Korea wmd-group.github.io @lonepair Art by Piers Barnes DOI: 10.1039/C6CP03474H HOPV16 – Invited Talk

Slide 2

Slide 2 text

What is Moving in Perovskite PV? Faster (fs) Slower (ps) Electrons and Holes Drift and diffusion of carriers Lattice Vibrations Phonons: organic and inorganic units Molecular Rotations Reorientation of MA+ or FA+ Ions and Defects Transport of charged species

Slide 3

Slide 3 text

What is Moving in Perovskite PV? Acc. Chem. Res. 49, 528 (2016) Status: We now understand timescale of processes from a combination of simulation (DFT/MD/MC) and experiment (neutron diffraction, scattering & 2D-vibrational spectroscopy)

Slide 4

Slide 4 text

Join the Journal Club – Mendeley Open group: add your own papers!

Slide 5

Slide 5 text

Talk Outline Materials Devices 1. Crystal Structure Local symmetry breaking 2. Dielectric Response Frequency and temperature 3. Band Gap Engineering A, B and X in ABX 3 4. Recombination Electrons and holes

Slide 6

Slide 6 text

Crystal Structure: CH 3 NH 3 PbI 3 M. Weller et al, Chem. Commun. 51, 4180 (2015) High-resolution powder neutron diffraction

Slide 7

Slide 7 text

Temperature-Driven Disorder (Entropy) J. M. Frost et al, APL Materials 2, 081506 (2014) Antiferroelectic à Random alignment of MA+ 0K – Order 300K – Disorder StarryNight Monte Carlo Code https://github.com/WMD-group/StarryNight

Slide 8

Slide 8 text

Inorganic Sublattice Histogram of I distribution 300 K dynamics (PBEsol/DFT) Thermal ellipsoids Occupation of harmonic phonon modes (Debye-Waller) Thermal motion of anions https://www.youtube.com/watch?v=K_-rsop0n5A

Slide 9

Slide 9 text

Soft Phonon Modes: Octahedral Tilts M ½½0 R ½½½ Predicted for MAPI: Phys. Rev. B 92, 144308 (2015) Confirmed: IXS phonons (Billinge Group, 2016) Vibrational Brillouin zone boundary instabilities cause dynamic cage tilting Harmonic phonon eigenvectors (Phonopy with ascii-phonons)

Slide 10

Slide 10 text

Local Symmetry Breaking Direct observation of local distortions A. N. Beecher et al, Under Review (2016); arXiv:1606.09267 Experiments by group of Simon Billinge (Columbia University)

Slide 11

Slide 11 text

Local Symmetry Breaking Confirmation from inelastic X-ray scattering A. N. Beecher et al, Under Review (2016); arXiv:1606.09267 Anharmonic phonons double-well potential (lattice dynamics) Short range Distorted low symmetry Long range Effective high symmetry (pair distribution functions)

Slide 12

Slide 12 text

[CH(NH 2 ) 2 ]PbI 3 Neutron Diffraction J. Phys. Chem. Lett. 6, 3209 (2015) Black phase of FAPbI 3 is cubic perovskite (not trigonal as previously reported) FA+ similar rotational disorder to MA+ τFA+ = 2 ps (0.5 THz); τMA+ = 3 ps (0.3 THz)

Slide 13

Slide 13 text

Talk Outline Materials Devices 1. Crystal Structure Local symmetry breaking 2. Dielectric Response Frequency and temperature 3. Band Gap Engineering A, B and X in ABX 3 4. Recombination Electrons and holes

Slide 14

Slide 14 text

Dielectric (Polarisation) Response Standard Inorganic Semiconductors Static dielectric constant Optical dielectric constant Lattice polarisation Source: Handbook of Photovoltaics (Wiley, 2002)

Slide 15

Slide 15 text

Dielectric Calculation of CH 3 NH 3 PbI 3 TO TO TO LO LO LO Effective Dielectric Constant Frequency (THz) “TO” modes “LO” modes APL Materials 1, 042111 (2013); Phys. Rev. B 92, 144308 (2015) Sum over phonon eigenmodes with Born effective charges

Slide 16

Slide 16 text

Rotational Polarisation Standard Inorganic Semiconductors Static dielectric constant Optical dielectric constant Lattice polarisation Organic-Inorganic Semiconductors Dipolar molecular rotation

Slide 17

Slide 17 text

Rotational Polarisation: Old News

Slide 18

Slide 18 text

Rotational Polarisation Described by Kirkwood-Fröhlich equation (dielectric response of dipolar liquid) Dipoles frozen Dipoles active Orthorhombic Tetragonal M. Maeda et al, J. Phys. Soc. Jap. 66, 1508 (1997) Herbert Fröhlich

Slide 19

Slide 19 text

Dielectric Response of CH 3 NH 3 PbI 3 • These refer to a bulk response that excludes microstructure / conductivity / contact effects • The static dielectric response is larger than common inorganic absorber materials

Slide 20

Slide 20 text

“Giant Dielectric Constant” Accounts of Chemical Research 49, 528 (2016) JPCL 5, 2390 (2014)

Slide 21

Slide 21 text

“Giant Dielectric Constant” Accounts of Chemical Research 49, 528 (2016) JPCM 20, 191001 (2008) JPCL 5, 2390 (2014)

Slide 22

Slide 22 text

Bananas are Lossy Dielectrics J. F. Scott, J. Phys. Conden. Matter 20, 2 (2007) Response dominated by ion transport

Slide 23

Slide 23 text

Mixed Ionic-Electronic Conductors Ange. Chemie 54, 1791 (2015); Nature Comm. 6, 8497 (2015) Low Schottky Formation Energy ~ 0.15 eV Vacancy E a (eV) CH 3 NH 3 + 0.8 Pb2+ 2.3 I- 0.6 es, ,8] es in m nd in id iodide [MAI; Reaction (2)] or lead i sub-lattices. nil ! V= MA þ V== Pb þ 3V I þ MAPbI3 nil ! V= MA þ V I þ MAI nil ! V== Pb þ 2V I þ PbI 2 of Prof. X. G. Gong Key Laboratory for Computational Physica Surface Physics Laboratory, Fudan Univers Reservoir of charged point defects independent of external chemical potential Figure 3. Iodide ion vacancy migration from DFT calculations (a) Calculated migration

Slide 24

Slide 24 text

Talk Outline Materials Devices 1. Crystal Structure Local symmetry breaking 2. Dielectric Response Frequency and temperature 3. Band Gap Engineering A, B and X in ABX 3 4. Recombination Electrons and holes

Slide 25

Slide 25 text

Electronic Structure of CH 3 NH 3 PbI 3 Configuration: PbII [5d106s26p0]; I-I [5p6] F. Brivio et al, Physical Review B 89, 155204 (2014) Relativistic QSGW theory with Mark van Schilfgaarde (KCL) Conduction Band Valence Band

Slide 26

Slide 26 text

Band Gap Engineering: Principles A site: Usually electronically inactive, but can change structure (volume and tilting pattern) B site: Forms lower conduction band (Pb is key for electron affinity and transport) X site: Forms upper valence band (I is key for ionisation potential and hole transport) A. Walsh, J. Phys. Chem. C 119, 5755 (2015)

Slide 27

Slide 27 text

Band Gap Engineering: Halides K. T. Butler et al, Materials Horizons 2, 228 (2015) Lighter halides: deeper ionisation potentials

Slide 28

Slide 28 text

Band Gap Engineering: Double Metals 2Pb2+ à Ag+ + Bi3+ (Charge conserving) Conduction network is broken: large effective mass & wider indirect E g Bad news for PV applications! With D. O. Scanlon (UCL)

Slide 29

Slide 29 text

Bismuth Chalcohalides (BiXY) O S Se Te F BiOF P4/nmm Batteries (Eg 4.2 eV) BiSF Unknown BiSeF Unknown BiTeF Unknown Cl BiOCl P4/nmm Photocatalyst (3.4) BiSCl Pnma “Gunn Effect” (1.9) BiSeCl Pnma “Gunn Effect” (1.8) BiTeCl P63 mc Rashba (0.8) Br BiOBr P4/nmm Photocatalyst (2.8) BiSBr Pnma “Gunn Effect” (2.0) BiSeBr Pnma “Gunn Effect” (0.9-1.5) BiTeBr P3-m1 Rashba (0.3-0.5) I BiOI P4/nmm Photocatalyst (2.0) BiSI Pnma “Gunn Effect” (1.8) BiSeI Pnma “Gunn Effect” (1.6) BiTeI P3-m1 Rasha / TI (0.4-0.5) Chalcogenide Halide Pnma P3-m1 Property engineering: 2 degrees of freedom Chem. Mater. 28, 1980 (2016); J. Mater. Chem. A 4, 2060 (2016)

Slide 30

Slide 30 text

BiSeI – Band Edge Electronic Structure A. M. Ganose et al, J. Mater. Chem. A 4, 2060 (2016) Anisotropic bonding: challenge for growth Valence band Conduction band Anion p Metal p

Slide 31

Slide 31 text

Talk Outline Materials Devices 1. Crystal Structure Local symmetry breaking 2. Dielectric Response Frequency and temperature 3. Band Gap Engineering A, B and X in ABX 3 4. Recombination Electrons and holes

Slide 32

Slide 32 text

Real Space e-h Separation Polar networks in CH 3 NH 3 PbI 3 separate e- / h+ Regions of high (red) and low (blue) electrostatic potential APL Materials 2, 081506 (2014); Nature Photonics 7, 695 (2015) e- h+

Slide 33

Slide 33 text

Reciprocal Space e-h Separation Symmetry breaking by CH 3 NH 3 + / tilting Relativistic Rashba splitting of band edges also separates electrons / holes Reduced recombination: Momentum selection rule Recombination modeling by Pooya Azarhoosh (KCL) optically excite thermalise recombine Energy vs k Physical Review B 89, 155204 (2014); arXiv:1604.04500

Slide 34

Slide 34 text

B: Effect of Light Intensity Changes in radiative recombination rate APL Materials (2016); arXiv:1604.04500 Solar cells operate in a different regime to many pump-probe spectroscopies

Slide 35

Slide 35 text

B: Effect of Light Intensity Changes in radiative recombination rate APL Materials (2016); arXiv:1604.04500 Solar cells operate in a different regime to many pump-probe spectroscopies See posters: 3704 by Pooya Azarhoosh (Recombination theory) 3763 by Scott McKechnie (Physical origin)

Slide 36

Slide 36 text

Conclusion Hybrid perovskites offer a rich solid-state chemistry and physics. Some puzzles are solved, but many remain. We need reliable and quantitative data (simulation and experiment) and theories to make progress. Group Members: PV – Lucy, Federico, Suzy, Keith, Youngkwang, Jarvist; MOFs – Chris, Jess, Katrine; Metastability – Jonathan, Lora, Ruoxi, Clovis Collaborators: PV – Mark van Schilfgaarde (KCL); Mark Weller and Saiful Islam (Bath); Piers Barnes and Brian O’Regan (ICL); Shiyou Chen (Fudan); Simon Billinge (Columbia) Slides: https://speakerdeck.com/aronwalsh

Slide 37

Slide 37 text

Challenges for Halide Perovskites Local Structure – correlation lengths Dynamic Disorder – connection to optoelectronics Ionic Conductivity – how to limit Electrical Conductivity – control p-type and n-type Chemical Stability – breakdown with O 2 / H 2 O Surfaces & Interfaces – poorly defined Alloys –thermodynamics and photo-stability Hysteresis – how to eliminate Beyond 3D – 2D (12%) & 1D hybrid perovskites