Slide 37
Slide 37 text
x = tf.placeholder(tf.float32, shape=[None, 2], name='x')
y = tf.placeholder(tf.float32, shape=[None, 1], name='y')
w = tf.Variable(tf.zeros([2, 1]), name='weight')
b = tf.Variable(tf.zeros([1]), name='bias')
y_pred = tf.nn.sigmoid(tf.matmul(x, w) + bias, name='y_pred')
with tf.name_scope("loss"):
loss = tf.reduce_sum(tf.square(y_pred - y), name='loss')
with tf.name_scope("train"):
optimizer = tf.train.AdamOptimizer(learning_rate=0.1, name='optimizer')
train_step = optimizer.minimize(loss, name='train_step')
with tf.Session() as session:
session.run(tf.global_variables_initializer())
for epoch in range(self.args.epochs):
_, summary, l = session.run(
[train_step, merged, loss],
feed_dict={
x: input, y: output
}
)
37