Slide 1

Slide 1 text

Thomas Augsten Konstantin Käfer René Meusel Caroline Fetzer Dorian Kanitz Thomas Stoff Torsten Becker Christian Holz Patrick Baudisch Multitoe

Slide 2

Slide 2 text

how to extend direct manipulation to 10,000 of objects we think that interaction using feet could play a role here

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

what if my application
 produces more data?

Slide 5

Slide 5 text

unreachable

Slide 6

Slide 6 text

1.  allow manipulating 10,000 of objects 2.  maintain direct manipulation from tabletop Goal:

Slide 7

Slide 7 text

related
 work

Slide 8

Slide 8 text

Cruz-Neira, C. CAVE SIGGRAPH 1993

Slide 9

Slide 9 text

Help me pull that cursor. Krogh, P. G. OZCH 2004

Slide 10

Slide 10 text

Grønbæk, K. ACE 2007 iGameFloor

Slide 11

Slide 11 text

Luminvision AdVis floor

Slide 12

Slide 12 text

we were surprised how limited
 interaction is on these floors…

Slide 13

Slide 13 text

touch is limited… Buxton, Interact b90

Slide 14

Slide 14 text

Table: through the air

Slide 15

Slide 15 text

porting this to the floor…

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

hard to escape gravity for >1sec

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

for direct manipulation we need multiple states

Slide 20

Slide 20 text

(we are still in related work)
 borrowing from
 gait analysis

Slide 21

Slide 21 text

Expressive Footwear Paradiso J., ISWC 1997

Slide 22

Slide 22 text

The Smart Floor Orr, R. J. CHI 2000

Slide 23

Slide 23 text

Choi/Ricci, IEEE ICSMC 1997 Toe Heel

Slide 24

Slide 24 text

combine floors + gait analysis

Slide 25

Slide 25 text

hardware

Slide 26

Slide 26 text

iGameFloor uses Front DI

Slide 27

Slide 27 text

key decision behind multitoe:
 add FTIR

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

1. support glass (34mm-60mm) bringing FTIR to floor
 requires almost no modification

Slide 32

Slide 32 text

0   20   40   60   80   100   pixel brightness [%] [kg/cm2] 1   0   log 2. need a harder compliant surface

Slide 33

Slide 33 text

Prototype

Slide 34

Slide 34 text

direct manipulation

Slide 35

Slide 35 text

as the name says:
 mani-pulation is about hands

Slide 36

Slide 36 text

what does direct manipulation
 mean when using feet?

Slide 37

Slide 37 text

à we conducted a few studies
 (not scientific, no hypotheses,
 but to inform design)

Slide 38

Slide 38 text

interacting with many objects 3 stepping on things 2 invoking menus 4 creating a passive tracking state 1

Slide 39

Slide 39 text

how to walk across a floor
 without setting things off

Slide 40

Slide 40 text

(as mentioned earlier)
 we distinguish lgaitsz ok, but there are lots of gaits which on discoverable & ergonomic?

Slide 41

Slide 41 text

how do users want to walk across a button
 without activating it study 1:

Slide 42

Slide 42 text

not all are equally plausible… activation on dwell à  users  can  never  stop  

Slide 43

Slide 43 text

Strategy To activate To not activate # Part of foot tap (ball only) walk 8 walk tiptoe 1 walk on ball walk on heel 1 Amount of pressure stomp walk 5 jump onto walk 2 Temporal double-tap walk 2 Dwell (with both feet) walk quickly 5 Left-right right foot left foot 1 Spatial walk across centre walk edge of button 5

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

gait recognition only possible because of FTIR

Slide 47

Slide 47 text

interacting with many objects 3 stepping on objects 2 invoking menus 4 creating a passive tracking state 1

Slide 48

Slide 48 text

here  are  three  bu,ons.   which  ones  do  users  expect  to  be  depressed?

Slide 49

Slide 49 text

If  these  hexes  were  bu,ons,   which  should  be  depressed?

Slide 50

Slide 50 text

participants painted in the buttons
 they thought their shoe should depress study 2:

Slide 51

Slide 51 text

only 2 referred to actual contact area

Slide 52

Slide 52 text

only 2 referred to actual contact area

Slide 53

Slide 53 text

majority of users: projection of shoe

Slide 54

Slide 54 text

majority of users: projection of shoe

Slide 55

Slide 55 text

same thing but only those >50% covered

Slide 56

Slide 56 text

for most not contact area, but projection

Slide 57

Slide 57 text

ok, so projection is harder with FTIR reconstruct by completing shoeprint front di ftir

Slide 58

Slide 58 text

interacting with many objects 3 stepping on objects 2 invoking menus 4 creating a passive tracking state 1

Slide 59

Slide 59 text

if we go with the projection model,
 interfaces become huge (keyboard)

Slide 60

Slide 60 text

small objects if we want 10,000 objects,
 large objects are not what we want

Slide 61

Slide 61 text

No content

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

hotspot we need to reduce the foot to a

Slide 64

Slide 64 text

targeting using a hotspot study 3:

Slide 65

Slide 65 text

3.1cm     3.5cm     Medium   1.5cm     1.7cm     Small   5.3cm     5.8cm     Large   smaller than

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

error rate per character Large 0 % 10 % 20 % 30 % Medium Small 3.0% 9.5% 28.6% outside keyboard neighboring key wrong key <10% error on 3cm buttons
 < 3% error on 5cm buttons

Slide 68

Slide 68 text

3x4 cm target 10.000  3x4cm  objects   we  need  a  3m  x  4m  floor this is quite feasible…
 (we are building one right now)

Slide 69

Slide 69 text

locking hotspot to a specific position on the sole requires FTIR

Slide 70

Slide 70 text

interacting with many objects 3 stepping on objects 2 invoking menus 4 creating a passive tracking state 1 (still in)

Slide 71

Slide 71 text

this was under the assumption that users agree on where the hotspot is. Do they?

Slide 72

Slide 72 text

step here

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

no, they disagree pretty massively

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

8.4cm

Slide 77

Slide 77 text

8.4cm   3.5cm   2.2cm   5.0cm   free
 choice shoe tip big toe ball

Slide 78

Slide 78 text

à let every user pick their hotspot

Slide 79

Slide 79 text

No content

Slide 80

Slide 80 text

No content

Slide 81

Slide 81 text

personalization works
 because of FTIR

Slide 82

Slide 82 text

interacting with many objects 3 stepping on objects 2 invoking menus 4 creating a passive tracking state 1

Slide 83

Slide 83 text

distances can get long… menu

Slide 84

Slide 84 text

Tap and wait Jump Heel in Front Stomp Tap with heel Clutching heels Edge of foot Slide with Foot how do users invoke a context menu study 4:

Slide 85

Slide 85 text

No content

Slide 86

Slide 86 text

reliable decision contact detection is better with FTIR

Slide 87

Slide 87 text

interacting with many objects 3 stepping on objects 2 invoking menus 4 creating a passive tracking state 1 these four things together enable direct manipulation, ftir is key

Slide 88

Slide 88 text

algorithms

Slide 89

Slide 89 text

sole recognition

Slide 90

Slide 90 text

raw - DI raw we use frontDI to locate the foot

Slide 91

Slide 91 text

raw FTIR we use FTIR to identify user and gait

Slide 92

Slide 92 text

User Identification User identification:
 compare to user database: based on
 center points of blobs—not great

Slide 93

Slide 93 text

log polar of Sensed image DFT exploring: comparing lfingerprintsl in frequency domain, seems more robust

Slide 94

Slide 94 text

log polar of reference image DFT exploring: comparing lfingerprintsl in frequency domain, seems more robust

Slide 95

Slide 95 text

what else…

Slide 96

Slide 96 text

backwards strafe right strafe left forward fire look left

Slide 97

Slide 97 text

No content

Slide 98

Slide 98 text

head tracking

Slide 99

Slide 99 text

No content

Slide 100

Slide 100 text

No content

Slide 101

Slide 101 text

future work

Slide 102

Slide 102 text

head tracking got us inspired. What else can we infer about space above the floor?

Slide 103

Slide 103 text

smart rooms based on multitouch
 Can we look after inhabitants?

Slide 104

Slide 104 text

No content

Slide 105

Slide 105 text

No content

Slide 106

Slide 106 text

No content

Slide 107

Slide 107 text

No content

Slide 108

Slide 108 text

conclusion

Slide 109

Slide 109 text

1.  allow manipulating 10,000 of objects 2.  maintain direct manipulation from tabletop 3.  gravity kills the passive tracking state 4.  FTIR à per-pxl pressure à gait recognition 5.  gravity brings in a ubicomp perspective summary:

Slide 110

Slide 110 text

the team: thomas, thomas, dorian, & rene

Slide 111

Slide 111 text

thanks to Christian, Torsten, Patrick Baudisch

Slide 112

Slide 112 text

Human-Computer Interaction Lab Thanks to everyone at the

Slide 113

Slide 113 text

Thomas Augsten Konstantin Käfer René Meusel Caroline Fetzer Dorian Kanitz Thomas Stoff Torsten Becker Christian Holz Patrick Baudisch thanks!