Slide 9
Slide 9 text
9
Experiment Design
Chem-Bio Informatics Society (CBI) Annual Meeting 2022, Tokyo, Japan
* As of July, 2022. ** On the USPTO-MIT dataset.
[1] (2020, Dai, H. et al.): https://doi.org/10.48550/arXiv.2001.01408.
[2] (2020, Tetko, I.V. et al.): https://doi.org/10.1038/s41467-020-19266-y.
[3] (2021, Somnath, V.R. et al.): https://doi.org/10.48550/arXiv.2006.07038.
[4] (2021, Chen, S. and Jung, Y.): https://doi.org/10.1021/jacsau.1c00246.
[5] (2022, Ucak, U.V. et al.): https://doi.org/10.1038/s41467-022-28857-w.
[6] (2022, Zhong, Z. et al.): https://doi.org/10.1039/d2sc02763a.
[7] (2017, Coley, C.W. et al.): https://doi.org/10.1021/acscentsci.7b00355.
[8] (2020, Jin, W. et al.): https://doi.org/10.48550/arXiv.1709.04555.
[9] (2021, Kearnes, S.M. et al.): https://doi.org/10.1021/jacs.1c09820.
Step 1. Literature Review * Step 2. Dataset Preparation Step 3. Evaluation
USPTO-50k
[7]
USPTO-MIT
[8]
ORD (Non-USPTO)
[9]
Top-N Accuracy - Aggregated
accuracy that reflects probability of
the ground truth being found within
the first N suggestions.
Other single-step retrosynthesis metrics:
1. MaxFrag Accuracy
2. Suggestion Duplication Rate
3. Suggestion Chemical Validity
4. Round-trip Accuracy
5. Coverage Rate
6. Diversity Rate…
Approach Year Type Top-1 (%)
GLN [1] 2020 TB 52.5
GraphRetro
[3]
2021 Semi-TB 53.7
LocalRetro [4] 2021 TB 53.4
Approach Year Type Top-1 (%)
AT [2] 2020 TF 53.5
RetroTRAE [5] 2022 TF 61.6 **
R-SMILES [6] 2022 TF 56.3