Slide 1

Slide 1 text

Adapting  to  unknown   smoothness  via  wavelet   shrinkage     David  L.  Donoho  and  Iain  M.  Johnstone     J.  American  Statistical  Assoc  Vol.  90,  No.432    (Dec  1995).       Presented  by  :  Anouar  Seghir   Master  TSI   January  13,2014  

Slide 2

Slide 2 text

Outline Introduction I.  Discret  Wavelet  Transform II.  Threshold III. Adaptive  Estimation IV. Examples Conclusion 2

Slide 3

Slide 3 text

Introduction Ø Noise: 3

Slide 4

Slide 4 text

Introduction Ø Denoising  Signal: 4

Slide 5

Slide 5 text

Introduction Ø Problem  formulation:            Given  N  noisy  samples  of  a  function  f: Ø Goal:              To  estimate  the  vector         5 y i = f (t i )+ z i !!!!!i =1,..., N t i = (i !1) N !!!!!!!z i !iid!N(0,! 2 ) f = ( f (t i ) i=1 N )

Slide 6

Slide 6 text

Introduction Ø Estimation:   Ø Usual  approach:            We  specify  a  class  of  function            :  Minimax  Risk   We  seek  an  estimator                aJaining    the  minimax  risk. 6 f ^ = arg!min f ^ !R( f ^ , f ) R( f ^ , f ) = N !1.!E || f ^ ! f || 2 2 R(N,!) = inf f ^ !sup f !R( f ^ , f ) f ^ !

Slide 7

Slide 7 text

Introduction Ø Many  theoritical  developpements: •  Stone(1982) •  Nemirovsky •  Polyak  and  Tsybakov(1985) Ø In  Practice: •  No  knowledge  of  an  a  priori  class   •  Unknown  smoothness 7 !

Slide 8

Slide 8 text

Introduction Ø Donoho  and  Johnstone    Sureshrink  approach: 1.  Apply  DWT(discret  wavelet  transform)  to  noisy  data 2.  Thresholding  of  Noisy  Wavelet  Coefficients 3.  Stein’s  Unbiased  Estimate  of  Risk  for  Threshold  Choice Ø  Sureshrink  is  asymptotically  near-­‐‑minimax  over  large   intervals  of  the  besov,  Sobolev  and  Triebel  Scales. 8

Slide 9

Slide 9 text

I.  Discret  Wavelet  Transform 1.  Wavelet  recall 2.  Discret  wavelet  transform  (DWT) 9

Slide 10

Slide 10 text

I.  Discret  Wavelet  transform   10 1  Wavelet  recall

Slide 11

Slide 11 text

I.  Discret  Wavelet  transform Ø  Continious  wavelet  transform: •  Ψ  is  the  mother  wavelet •  a  is  the  scale  parameter •  b  is  the  translation  parameter •   Љhas  mean  equal  to  zero 11 1  Wavelet  recall !! !"# !! ! ! ! ! !! ! ! ! ! !! !! !! ! !"!!!!!!!! ! !!!!!! ! ! ! !"# !! ! ! ! !!!! ! ! !!!! ! ! ! ! ! ! ! ! ! ! ! ! !

Slide 12

Slide 12 text

I.  Discret  Wavelet  transform Ø  Discret  wavelet  transform: •  One  restricts  the  parameters  a,b  to  only  discrete  values:   •  Dyadic  transform:   12 2  Wavelet  recall ! ! ! ! !!!!!!! ! !! ! !!!!!!!! ! !! ! ! !"# !!! ! ! !!!! ! ! ! ! ! ! !!! ! !!! ! !! !! !!! !! ! !"!! ! ! ! ! !!!! ! ! !!!! !!!! ! ! ! ! ! !!!! ! ! ! ! !!!!! !! !!! ! !!! ! ! ! ! !! ! !!!!!!!! ! !!! ! !!!! ! ! !!!!!! !!!! ! ! ! ! ! !

Slide 13

Slide 13 text

I.  Discret  Wavelet  transform •  Localized  in  time  an  frequency •  Many  choice  of  mother  wavelet: §  Continuous  case:  Meyer,  Mexican  hat §  Discrete  case:  Haar  ,  daubechies 13 3  Wavelet  recall

Slide 14

Slide 14 text

I.  Discret  Wavelet  Transform 1.  Wavelet  recall 2.  Discret  wavelet  transform  (DWT) 14

Slide 15

Slide 15 text

I.  Discret  Wavelet  transform Ø  Orthonormal  Family  of  Wavlet: 15 2  Discret  Wavelet  transform • !"#$%&'()$"#%)*+,*-$.(%(+)/+(0-1'++%(+ !! !!! ("12+3+ o !!! ! !!!! ! !!!! + o !"#!!!! !! ! ! + o !"#!!!! !! ! !+ o !!!+("12+#2-#!! !!! ! !! !!!! +%(+-*+)#2)*)&4-$+5-(%(+)/++!! ++ o !!! ! !! ! ! !! ! !!!! ! ! !!!! + o !! !! ! ! !!! ! ! !! ! !!! !!!!! ! !! + ! ! ! ! ! ! !!!! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! !!!! ! !! ! ! ! ! ! !!!!!! !!! ! !!!! !

Slide 16

Slide 16 text

I.  Discret  Wavelet  transform Ø  Mallat’s  Algorithm:           •  H  is  a  high  pass  filter •  G  is  a  low  pass  filter 16 2  Discret  Wavelet  transform

Slide 17

Slide 17 text

I.  Discret  Wavelet  transform Ø  DWT  in  the  problem:           17 2  Discret  Wavelet  transform • !"#"$$! ! !!! ! !!! !!!!!! ! !!$ • !!$%&'()('$*+,$ o !!!"#$%&!!"!!"!#$%&$ o -$$./0012#$3(&4#5$ • 612$7$"&'$-$8%)('$9($4(#$"$#2"&.812:"#%1&$:"#2%)$;,$ o ! ! !"$ o ! ! !!!$$$ $ !! ! !!!! !!!! ! !!! $$$$ $ $$$$ !! ! !!!!! ! !!!!!! ! !!!!!!!! ! !!!!!!!"!#!"##$$ $

Slide 18

Slide 18 text

II.  Thresholding 1.  Noisy  Wavelet  Coefficients 2.  Threshold  Selection  by  Sure 18

Slide 19

Slide 19 text

II.  Thresholding Ø  W  transforms  whithe  noise  into  white  noise: Ø  W  transforms  an  estimator  in  one  domain  into  an  estimator  in  the   other  domain:   19 1  Noisy  Wavelet  Coefficients !!!! ! !!!! ! !!!! !!!!!!!!!!!!!!! !!!"!!!!!!!!! ! ! !!!!

Slide 20

Slide 20 text

II.  Thresholding Ø   Most  of  the  coefficients  in  a  noiseless  wavelet  transform  are   effectively  zero. Ø  Recovering  f  is  equivalent  to  recover  the  significantly  nonzero   coefficients  of  f. Ø  Thresholding  scheme: 20 1  Noisy  Wavelet  Coefficients • !"#$$%&'%()$$'!!!! ' • !*++,%&'$)-.+'!!!! '

Slide 21

Slide 21 text

II.  Thresholding Ø  Hard  Thresholding  :   Ø  Plot  du  Hard  Treshold  pr  un  certain  t Ø  Soft  Thresholding:     Ø  Plot  du  soft  threshold  pr  le  meme  t  que  above 21 1  Noisy  Wavelet  Coefficients !! !!!! ! !!!!!"! !!!! ! ! !!!! !!!!"! !!!! ! ! ! !! !!!! ! !"#!!!!! !! !!!! ! !!!!

Slide 22

Slide 22 text

II.  Thresholding 22 1  Noisy  Wavelet  Coefficients

Slide 23

Slide 23 text

II.  Thresholding 1.  Noisy  Wavelet  Coefficients 2.  Threshold  Selection  by  Sure 23

Slide 24

Slide 24 text

II.  Thresholding Ø Recall  on  SURE  Estimator: •  SURE:  Stein’s  Unbiased  risk  estimator •  Unbiased  estimator  of  the  MSE  of  an  arbitrary  estimator 24 2  Threshold  Selection  by  Sure • ! ! !!!!"!!"#!!"#"$%"!!"#"$%&%#! • ! ! !!!!!"#$!!"#!!! ! !!"!!!!!!!!! • ! ! !!"#!$%&'("&)*!)+!!!!%,-.!&."&!!! ! ! ! ! !!!!!! • !!!"#$%&!!"##$%$&'"()*$!! !"#$ ! ! !!! ! ! ! ! ! !!! ! !!! !! !!! ! !!! ! !

Slide 25

Slide 25 text

II.  Thresholding Ø  We  consider  the  soft  threshold  estimator: •  By  Stein’s  result: •  Threshold  selection:     25 2  Threshold  Selection  by  Sure !! ! !! ! !! !!! !! !"#$ !!! ! ! ! !!! !! !! ! ! ! ! !! ! !!! ! !!! ! !! ! !"#!"# !!!! !!"#!!!! !"#$ !!! !

Slide 26

Slide 26 text

II.  Thresholding Ø Donoho  &  Johnoston’s  VisuShrink: •  Use  a  global  threshold:     •  No  computational  complexity  but  less  adaptive  to  unknow   smoothness.       26 2  Threshold  Selection  by  Sure !! ! !"#$!!!!

Slide 27

Slide 27 text

II.  Thresholding Ø Extreme  Sparsity  Situation: •  Hybrid  Scheme: o  Measure  of  sparsity: o  Threshold  choice:     27 2  Threshold  Selection  by  Sure !! ! ! !! ! ! !! ! ! ! !! ! !!! !"# ! ! !!!! ! !!"#$!%#&'( ! ! !!!!!!!!!!"!!! ! ! ! !!!!!!!!!!!!!!!"#$%&'($ !

Slide 28

Slide 28 text

II.  Thresholding Ø Threshold  estimator:     28 2  Threshold  Selection  by  Sure !!!"#$%!!"#$ !! ! ! !! !!! !!!!!!!!"!!! ! ! ! !!!!! !! !!! !!!!!!!!!"#$%&'($ ! !"#$%'()!!*+($,+")-('%)!!),$&)$.,+("+)*$"/(+#+)0&,+1+#)#(&."-'(%)

Slide 29

Slide 29 text

II.  Thresholding Ø Computational  effort: •  Threshold  selection     •  To  apply  Threshold     29 2  Threshold  Selection  by  Sure !!!"#$ ! !! !!!!!

Slide 30

Slide 30 text

III.  Adaptive  Estimation 1.  The  Besov  Scale 2.  Adaptive  Estimation  over  Besov  Bodies 30

Slide 31

Slide 31 text

III.  Adaptive  Estimation Ø   Besov  space: •  De  Voor  and  Popov  (1988)     31 1  The  Besov  Scale • ! ! ! !!"!#$%&!'())*#*+,*! ! ! ! ! ! ! ! !! !!!! ! !"! ! !!! ! ! • !!!! !!! !!!#$%&!-.'/0/1!.)!1-..%&+*11!.)!!! ! !!! !! ! !! ! ! ! ! ! !!!! !! ! ! ! ! ! ! !!! !!!!!" ! ! ! • 2&*!3*1.4!5*-(+.#-!.)!(+'*6!!!! !! !!!).#!! ! !"! ! ! !!!! ! ! !!!! !! ! !! ! !" ! ! ! !!!!!!!"!! ! ! !"#!!!!! !!!! !!! !! !! !!!!!!!!!!!"!! ! ! ! ! !

Slide 32

Slide 32 text

III.  Adaptive  Estimation Ø   Besov  space: Ø Besov  Ball:     32 1  The  Besov  Scale !!!! ! ! !! !!! ! !!! ! !!! !!! !! ! !!!! ! ! ! ! !!!! ! !!! ! !! !!! ! !!! ! !!! !!! !! ! !!!! ! ! ! !

Slide 33

Slide 33 text

III.  Adaptive  Estimation Ø   Besov  space  and  others  spaces:     33 1  The  Besov  Scale ! • !!!! ! !"#$%"$&'!($)*!)*'!+,!!-#.#/'0!123"'!!!! !! ! • 4#5'!6'%'53//7!3//!)*'!!+8!-#.#/'0!123"'1!!! !!35'!"#%)'$%'&!$%!! !!!! ! !!! ! • +')91!! ! !!!:#/&'5!;/311!)*'%!!!!! ! !! !!! ! !!!! !!! ! !!!! ! • <*'!1')!#=!.#>%&'&!035$3)$#%!$1!!3!1>.1')!#=!!!!! ! !!! ! !" ! !"# ! !! ! ! !!!! ! ! ! !! ! !! ! ! ! !!!! ! !! !! ! ! !

Slide 34

Slide 34 text

III.  Adaptive  Estimation 1.  The  Besov  Scale 2.  Adaptive  Estimation  over  Besov  Bodies 34

Slide 35

Slide 35 text

III.  Adaptive  Estimation Ø   Problem  formulation  to  theory:     35 2  Adaptive  Estimation  over  Besov  Bodies !!!! ! !!!! ! !!!! !!!!!!!!! !!!"!!!!! !!!!!!!!! ! ! ! ! ! • "#$%&!!! ! !!!! ! • '#&()!'(*+#!! !!!! ! ! !!! ! !!!! !! ! !!!!! ! ! ! ! o !!,-+!.-(/!!! ! !!!! ! !! o ! ! ! ! ! ! ! ! ! ! o ! !!!!! ! ! !!! !!!! ! !!!!!! !!! ! !!! !!!!! • 0+1+/,2!-+&3!+&4! ! ! ! !! !!!! ! ! !"# ! !!"!!!! ! ! ! ! ! ! ! ! o 5/(16!$7#!$7-#&7(8*4! ! ! ! !! !!!! ! ! !"# ! !!"!!!! ! ! ! !!!"#$!!!"#$! ! ! ! ! ! o ! !!!"#$!!!"#$! ! ! !!"#$!!!"#$ !!!!! !!!! !

Slide 36

Slide 36 text

III.  Adaptive  Estimation Ø   Fundamental  theorem: Ø  Using  this  result  we  the  have  the  following  Theorem:     36 2  Adaptive  Estimation  over  Besov  Bodies !"#$!! ! ! ! ! ! ! $$#%"&'$ !"#! !!!!!! ! !! ! !!!"#$!!!"#$! ! ! ! ! ! !! ! !! !!!! ! ! ! ! ! ! !!!!!! ! !$ • !"#$#%"$&'()*"#"$+,-"."#$,/,.0('($)1**"(21/&$#1$,$+,-"."#$!$%,-'/3$*$/4..$ 515"/#($,/&$*$)1/#'/4"($&"*'-,#'-"(6$! ! !"# !! ! !$ • !"#$#%"$5'/'5,7$*'(8$9"$&"/1#"&$90$$ ! !! !!!! ! !!! ! !"# ! !!" !!!!!!! ! ! ! ! ! ! ! $ • :%"/$;4*";%*'/8$'($(45.#,/"14($/",*.0$5'/'5,7<$ $ !!" ! !!! ! ! ! !!"#$!!!"#$! ! ! ! !! !!!! ! ! !!!!!!!! ! !$ $ =1*$,..$!! ! ! !!! !!6$=1*$,..$! ! !!! !!6$,/&$=1*$,..$!! ! ! ! !$

Slide 37

Slide 37 text

IV.  Examples 1.  VisuShrink  versus  Sureshrink 37 • !"#$%&'''''''''''''''! ! ! !! ! ! ! !! !'''''''! ! ! !!!!"# ! ! ! ' • !()*&'''''''''! ! ! !! ! !!!!! ! !! !''''''''''! ! ! !! ! ! !!' • +#**",-'''! ! ! !!! ! !! !"# !! !!! !!! !!!!!! ! !!!"' • .,/0&12,'''! ! ! ! !"# !!! ! !"# ! ! !!! ! !"#!!!!" ! !!' ' TBlock=[0.1,0.13,0.15,0.23,0.25,0.40,0.44,0.65,0.76, 0.78,0.81]; HBlock=[4,-5,3,-4,5,-4.2,2.1,4.3,-3.1,2.1,-4.2]; HBump=[4,5,3,4,5,4.2,2.1,4.3,3.1,5.1,4.2]; WBump=[0.005,0.005,0.006,0.01,0.01,0.03,0.01,0.01,0. 005,0.008,0.005]; • ! ! !"#!!"#! ! ! !!"!#!!"#$% '

Slide 38

Slide 38 text

III.  Adaptive  Estimation     38 2  Adaptive  Estimation  over  Besov  Bodies

Slide 39

Slide 39 text

Conclusion 1.  SureShrink  is  nearly  Minimax  over  a  large  range  of   Besov  Spaces. 2.     Low  computational  complexity 3.  More  important  is  the  choose  of  the  wavelet  family  and   the  number  of  resolution. 39

Slide 40

Slide 40 text

References 1.  Ten  Lectures  on  Wavelet  -­‐‑Daubechies 2.     Ideal  Spatial  adaptation  by  wavelet  shrinkage-­‐‑ Donoho&Johnstone 3.  Multiresolution  Analysis  and  fast  algorithms  on  an  interval  – Daubechies-­‐‑Cohen-­‐‑Vial-­‐‑Jawerth 4.  OndeleJes  sur  l’intervalle-­‐‑Meyer 40