Slide 42
Slide 42 text
参考文献:論文(2/2)
• Kayano, M., Matsui, H., Yamaguchi, R., Imoto, S., and Miyano, S. (2016). Gene set differential analysis
of time course expression profiles via sparse estimation in functional logistic model with application to
time dependent biomarker detection. Biostatistics, 17, 235–248.
• Lin, Z., Cao, J., Wang, L., and Wang, H. (2017). Locally Sparse Estimator for Functional Linear
Regression Models. Journal of Computational and Graphical Statistics, 26(2):306–318.
• Matsui, H., Araki, Y., and Konishi, S. (2008). Multivariate regression modeling for functional data.
Journal of Data Science, 6(3), 313–331.
• Petersen, A., Müller, H.-G. (2019). Wasserstein covariance for multiple random densities, Biometrika,
106, 339–351.
• Ramsay, J. (1996). Principal differential analysis. Journal of the Royal Statistical Society Series B, 58,
495–508.
• Ramsay, J. and Dalzell, C. (1991). Some tools for functional data analysis. Journal of the Royal
Statistical Society Series B, 53, 539–572.
• Sangalli, L.M., Secchi, P., Vantini, S. and Vitelli, V. (2010). K-mean alignment for curve clustering,
Computational Statistics and Data Analysis, 54, 1219-1233
• Wu, Y., Fan, J., and Müller, H. (2010b). Varying-coefficient functional linear regression. Bernoulli,
16(3):730–758.
• Zhou, J., Wang, N.-y., and Wang, N. (2013). Functional linear model with zero-value coefficient function
at sub-regions. Statistica Sinica, 23, 25–50. 42