ݚڀհʮֶͿྗʯͷ֦ு
ڵຯ ཧղ ೝෛՙ
ΞΠτϥοΩϯά
αʔϞάϥϑ
ಡΈฦ͠ ඓ෦ද໘Թ
ࢹ
S. Ishimaru, et al. Cognitive State Measurement on Learning Materials by Utilizing Eye Tracker and Thermal Camera. Proc. ICDAR HDI 2017, pp. 32–36, 2017.
S. Ishimaru, et al. Augmented Learning on Anticipating Textbooks with Eye Tracking. Positive Learning in the Age of Information (PLATO), pp. 387–398, 2018.
ࢹઢͰ͔Βͳ͍୯ޠΛਪఆͯ͠୯ޠாΛࣗಈͰͭ͘Δ
ܭଌ͞Εͨࢹઢ
ԁͷେ͖͞ࢹ࣌ؒ
͍͠ͱײͨ͡୯ޠͷਪఆ
ΦϨϯδਖ਼ղใਫ৭ਪఆ݁Ռ
େࣾ et al. "ࢹใΛ༻͍ͨओ؍తߴқ୯ޠͷਪఆ". ిࢠใ௨৴ֶձٕज़ݚڀใࠂ, vol. 115, no. 517, PRMU2015-189, pp. 149-153, 2016.
Slide 40
Slide 40 text
ࢹઢͰ֬৴Λਪఆͯ͠෮शͷॱ൪Λ࠷దԽ͢Δ
ར༻ऀͷֶशσʔλ͕͋Εͷਫ਼ͰਪఆͰ͖Δ
֬৴Λͨͣʹ͑ͯؒҧ͑ͨͷྫ ֬৴Λͬͯ͑ͯؒҧ͑ͨͷྫ
S. Ishimaru et al. "Confidence-Aware Learning Assistant". In arXiv preprint arXiv:2102.07312, 2021.
Slide 41
Slide 41 text
No content
Slide 42
Slide 42 text
ݚڀհʮߟ͑Δྗʯͷ֦ு
S. Ishimaru, et al. The Wordometer 2.0: Estimating the Number of Words You Read in Real Life using Commercial EOG Glasses. Proc. UbiComp 2016 Adjunct, pp. 293–296, 2016.
S. Ishimaru, et al. Reading Interventions: Tracking Reading State and Designing Interventions. Proc. UbiComp 2016 Adjunct, pp. 1759–1764, 2016.
#
3 -
Electrodes
Horizontal axis: L - R [mV]
Vertical axis: B - (L + R)/2 [mV]
؟ిҐ͔ΒࢹઢํΛਪఆ
100%
9:41 AM
ػցֶशͰʮಡΜͩ୯ޠͷʯΛਪఆ Ϣʔβʔʹఏࣔ
Slide 43
Slide 43 text
No content
Slide 44
Slide 44 text
ະ౿ࣄۀʮ৺Թܭʯ
ηϯαͰهͨ͠ʑͷߦಈϩά͔Β
৺ͷঢ়ଶΛఆྔԽͯ͠දࣔ͢ΔΞϓϦ
Slide 45
Slide 45 text
52%
19%
0%
47%
75%
93%
0%
5%
6%
Predicted class
low middle high
Actual class
high middle low
BDDVSBDZ
S. Ishimaru and K. Kise.“Quantifying the Mental State on the Basis of Physical and Social Activities”. Proc. UbiComp '15 Adjunct, pp. 1217–1220, 2015.
։ൃͷ͖͔͚ͬᶃ
ࣗͷෆௐ͔ΒίϯσΟγϣϯͱηϯασʔλͷؒʹ૬ؔΛൃݟ
*1"/&847PMIUUQTXBSQOEMHPKQJOGPOEMKQQJEXXXJQBHPKQ
fi
MFTQEG
Slide 51
Slide 51 text
ݚڀհʮ͑Δྗʯͷ֦ு
ൃɾᰐ͖ɾস͍Λߴਫ਼Ͱਪఆ
'TDPSF
Τϯήʔδ߹͍ ൃɾॻهɾ৬
Λߴਫ਼Ͱਪఆ
ϢʔβʔඇґଘͷֶशͰ"DD
'TDPSF
Chen, et al. Quantitative Evaluation System for Online Meetings Based on Multimodal Microbehavior Analysis. Sensors and Materials 34 (8), pp. 3017–3027, 2022.
Watanabe, et al. EnGauge: Engagement Gauge of Meeting Participants Estimated by Facial Expression and Deep Neural Network IEEE Access, 2023 (Ealy Access).
Slide 52
Slide 52 text
%JTDVTTJPO+PDLFZ %+
#(.ͳ͠ #(.ݻఆ #(.ಈత
ఏҊγεςϜ
ൃྔʹԠ֤ͯࣗ͡ͷ1$ͷ#(.͕มΘΔ
ΦϯϥΠϯϛʔςΟϯάγεςϜΛ։ൃ
ಛఆͷࢀՃऀ͕Γ͗͢ΔͷΛࢭ
Ͱ͖Δ͜ͱΛ࣮ݧͰ໌Β͔ʹͨ͠
H. Suzawa et al.Supporting Smooth Interruption in a Video Conference by Dynamically Changing Background Music Depending on the Amount of Utterance. UbiComp '22 Adjunct