Slide 1

Slide 1 text

"*ݚڀऀʹͳΔʵֶੜ࣌୅ͷ ܦݧ͔Β࠷ઌ୺ͷݚڀ·Ͱʵ ੴؙᠳ໵ େࡕެཱେֶେֶӃ৘ใֶݚڀՊಛ೚ڭत   Ѫඤݝཱࠓ࣏౦த౳ڭҭֶߍ

Slide 2

Slide 2 text

ੴؙᠳ໵ࣗݾ঺հ  • Ѫඤݝཱদࢁ੢த౳ڭҭֶߍଔۀ • େࡕ෎ཱେֶ޻ֶ෦ଔۀ ֶ࢜೥  • େࡕ෎ཱେֶେֶӃ޻ֶݚڀՊमྃ म࢜೥  • ΧΠβʔεϥ΢ςϧϯ޻Պେֶमྃ ത࢜೥  • %',*υΠπਓ޻஌ೳݚڀηϯλʔ ϙευΫ೥  • ΧΠβʔεϥ΢ςϧϯ޻Պେֶ δϡχΞڭत೥  • ೥݄͔Βେࡕެཱେֶ ಛ೚ڭत ߴߍੜͷࠒ X(PPHMF(MBTT X1I%)BU

Slide 3

Slide 3 text

ओͳ࢓ࣄ͸೥େࡕສതͰలࣔ͢Δ"*ج൫ͷݚڀ։ൃ

Slide 4

Slide 4 text

ਓͷ໾ʹཱͭ΋ͷɾਓΛ໘ന͕ΒͤΔ΋ͷΛ࡞Δͷ͕޷͖

Slide 5

Slide 5 text

झຯ͸ཱྀߦɻҰ൪ԕ͍ͱ͜Ζͩͱೆۃʹߦͬͨ͜ͱ΋

Slide 6

Slide 6 text

ੴؙᠳ໵ւ֎ܦݧ  • ֶ෦Ͱ൒೥υΠπɺम࢜Ͱϲ݄ϑϥϯεʹཹֶ • ͦͷޙυΠπͰब৬ͯ͠೥ؒͷݚڀੜ׆ ത࢜ʙڭһ 1TZCFS-BC େֶͷݚڀࣨΛओ࠻ J2--BC %',*ͷݚڀࣨΛڞಉओ࠻ "MQIBCFO ελʔτΞοϓͷ$30

Slide 7

Slide 7 text

ΧΠβʔεϥ΢ςϧϯ

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

ߨԋͷΞ΢τϥΠϯ  5IFPSFUJDBM 4PDJBM 1FSTPOBM ೔ʑਐԽ͢Δ"* "*ݚڀऀͱ͍͏৬ۀ ਓΛݡ͘͢Δ"* "*ݚڀऀʹͳΔ·Ͱ 1SBDUJDBM

Slide 11

Slide 11 text

ߨԋͷΞ΢τϥΠϯ  5IFPSFUJDBM 1SBDUJDBM 4PDJBM 1FSTPOBM ೔ʑਐԽ͢Δ"* "*ݚڀऀͱ͍͏৬ۀ ਓΛݡ͘͢Δ"* "*ݚڀऀʹͳΔ·Ͱ

Slide 12

Slide 12 text

ਓ޻஌ೳ "SUJ fi DJBM*OUFMMJHFODF ͱ͸ԿͩΖ͏͔  νϟοτϘοτ͸"*ʁ ࣗಈӡసं͸"*ʁ ࣗಈυΞ͸"* ԿΛ΋ͬͯਓ޻஌ೳͱݺͿ͔͸ݚڀऀͷؒͰ΋ᐆດ ൚༻ɺಛԽɺFUD OBCDPTZTUFN ࠓ೔ͷߨԋͰ͸ʮ஌ੑΛײ͡ΒΕΔٕज़ʯΛਓ޻஌ೳͱ͠·͢ ֶͿɾߟ͑Δɾ఻͑Δೳྗ

Slide 13

Slide 13 text

༷ʑͳڝٕͰਓؒΛ্ճΔࢥߟೳྗ "MQIB(P   ғޟ"*͕ਓؒͷϓϩع࢜ΛഁΔ %FFQ#MVF   νΣε"*͕ਓؒͷϓϩع࢜ΛഁΔ

Slide 14

Slide 14 text

࿭੕Λൃݟ

Slide 15

Slide 15 text

λϯύΫ࣭ͷߏ଄Λ༧ଌ

Slide 16

Slide 16 text

පؾͷ਍அɾ࣏ྍิॿ ໢ບը૾͔Β༷ʑͳපؾ ྫύʔΩϯιϯප Λ਍அ ໢ບը૾͔Βͷ൚ԽՄೳͳ ࣬ױݕग़ͷͨΊͷجૅϞσϧ

Slide 17

Slide 17 text

ੜ੒"* ࣥචɺඳըɺ࡞ۂɺFUD

Slide 18

Slide 18 text

͜͜਺೥Ͱ"*ݚڀ͕ٸ଎ʹൃలͨ͠ཧ༝͸ʁ  :FT /P  ೖྗ ग़ྗ ೖྗ ग़ྗ ೖྗ ग़ྗ ਓؒͷ஌ࣝΛϚχϡΞϧԽ ೴ͷਆܦωοτϫʔΫΛ࠶ݱ ར఺ ܽ఺ ࣮૷ͱཧղ͕ൺֱత؆୯ ϚχϡΞϧʹͳ͍໰୊͸ղ͚ͳ͍ ๲େͳֶशσʔλͱܭࢉࢿݯ͕ඞཁ ະ஌ͷ໰୊΋ֶशͯ͠ղ͚ΔΑ͏ʹ ͜ΕΒ͕ἧͬͨ

Slide 19

Slide 19 text

࠷৽ͷจॻੜ੒"*͸ԯΛ௒͑ΔύϥϝʔλΛ࣋ͭ  Zhao, Wayne Xin, et al. "A survey of large language models." arXiv preprint arXiv:2303.18223 (2023).

Slide 20

Slide 20 text

ಛʹ͜͜਺ϲ݄Ͱจॻੜ੒"*͕ൃలͨ͠ཧ༝͸ʁ  • େن໛ݴޠϞσϧ -BSHF-BOHVBHF.PEFM ͷొ৔ • ݴޠϞσϧͱ͸ɺςΩετͷଓ͖Λ༧ଌ͢Δ֬཰Ϟσϧ ʮ೔ຊͷट౎͸ʯ ๺ژ  ౦ژ  ژ౎  ӳࠃͷट౎͸ϩϯυϯͰݕࡧ͢Δͱ݅ ӳࠃͷट౎͸Ͱݕࡧ͢Δͱ ݅ P(ϩϯυϯ|ӳࠃ, ͷ, ट౎, ͸) = 8 21,700 ֬཰͕ΑΓߴ͍୯ޠΛ୳͢ ֬཰͸େྔͷจॻ ίʔύε ͔Βܭࢉ ୯ͳΔ ୯ޠ༧ଌػΛνϡʔχϯά͢Δͱ༷ʑͳ໰୊Λղ͚Δ͜ͱ͕෼͔ͬͨ Ԭ࡚, େن໛ݴޠϞσϧͷڻҟͱڴҖ, AIPγϯϙδ΢Ϝ੒Ռใࠂձ, 2023 https://speakerdeck.com/chokkan/20230327_riken_llm ΑΓൈਮ͠վม

Slide 21

Slide 21 text

ಛʹ࿩୊ʹͳ͍ͬͯΔ$IBU(15ͱ͸Կʁ  • େن໛ݴޠϞσϧ(15 (FOFSBUJWF1SFUSBJOFE5SBOTGPSNFS Λ֦ு • ༩͑ΒΕͨࢦࣔ ϓϩϯϓτ ʹैͬͯԠ౴Λฦ͢Α͏ɺ 
 ਓؒͷϑΟʔυόοΫͱڧԽֶश͕૊Έࠐ·Ε͍ͯΔ L Ouyang, J Wu, X Jiang, D Almeida, et. al. 2022. Training Language Models to Follow Instructions with Human Feedback. arXiv:2203.02155. (15ͷճ౴ ϓϩϯϓτ Ϣʔβʔ ཧ૝తͳճ౴ 0QFO"*ࣾͷ Ξϊςʔλʔ ֶश ޻෉ᶃ4VQFSWJTFE fi OFUVOJOH ޻෉ᶄ3FXBSENPEFM 0QFO"*ࣾͷ Ξϊςʔλʔ (15ͷճ౴ (15ͷճ౴ (15ͷճ౴ ճ౴ϥϯΩϯά ֶश (15ͷճ౴

Slide 22

Slide 22 text

ߨԋͷΞ΢τϥΠϯ  5IFPSFUJDBM 1SBDUJDBM 4PDJBM 1FSTPOBM ೔ʑਐԽ͢Δ"* "*ݚڀऀͱ͍͏৬ۀ ਓΛݡ͘͢Δ"* "*ݚڀऀʹͳΔ·Ͱ

Slide 23

Slide 23 text

"*ݚڀऀͬͯͲΜͳ࢓ࣄʁ  • "*ΛΑΓݡ͘͢ΔͨΊͷΞϧΰϦζϜ ࢉ๏ ΛߟҊͨ͠Γ 
 "*ٕज़Λ༷ʑͳ෼໺ ҩྍɺڭҭɺ ʹԠ༻ͨ͠Γ͢Δ࢓ࣄ • ࢓ࣄͷ໨ඪ͸ɺݚڀ੒ՌΛ࿦จ΍੡඼ͱͯ͠ൃද͢Δ͜ͱ • ۈΊઌ͸େֶ ڭҭʹॏ఺ ͔Βاۀ ݚڀʹॏ఺ ·Ͱ༷ʑ • Ͳ͏͢Ε͹ͳΕΔʁത࢜߸ΛऔΔͷ͕Ұൠత ւ֎Ͱ͸ಛʹ  • େֶ ֶ࢜೥  େֶӃ म࢜೥ ത࢜೥ Ͱऔಘ͢Δ

Slide 24

Slide 24 text

ݚڀ׆ಈ  • ݚڀςʔϚΛߟ͑Δ • ࿦จΛಡΜͰઌߦݚڀΛௐࠪ͢Δ • ࣮ݧ͢Δ ৘ใֶݚڀͷ৔߹͸γεςϜͷ࣮૷ͱධՁ  • ࿦จΛॻ͘ • ֶձͰݚڀ੒ՌΛ఻͑Δ • Ճ͑ͯɺݚڀࢦಋɾतۀɾֶձӡӦɾֶ಺༻຿ͳͲ

Slide 25

Slide 25 text

ࠃࡍֶձͷ༷ࢠ

Slide 26

Slide 26 text

ࠃࡍֶձͷ༷ࢠϓϨθϯςʔγϣϯ

Slide 27

Slide 27 text

ࠃࡍֶձͷ༷ࢠϙελʔɾσϞൃද

Slide 28

Slide 28 text

ͳͥ࿦จΛॻ͘ͷ͔  • ۭؒΛ௒͑ͯ஌ࣝΛ఻͑ΔͨΊ • ֶձൃද͚ͩͰ͸ͦͷ৔ʹډ߹Θͤͨਓʹ͔͠఻ΘΒͳ͍ • ࿦จͱͯ͠ൃߦ͞ΕΔͱੈքதͷਓ͕ಡΉ͜ͱ͕Ͱ͖Δ • ࣌ؒΛ௒͑ͯ஌ࣝΛ఻͑ΔͨΊ • ࿦จ͸ϓϩάϥϜΑΓ௕࣋ͪ͢Δ • ॻ͕ࣜ౷Ұ͞Ε͓ͯΓ৘ใऩू͕ޮ཰తͱ͍͏ϝϦοτ΋

Slide 29

Slide 29 text

υΠπͰതֶ࢜ੜͱͯ͠ʮಇ͘ʯ  • υΠπͷതֶ࢜ੜ͸ϓϩδΣΫτϚωʔδϟ • ए͍େֶੜɾେֶӃੜΛࢦಋ͢Δ ςʔϚܾΊ͔Βʂ  • ͦͷܦݧ͕ങΘΕͯमྃޙʹݚڀҎ֎ͷ৬ʹब͘ਓ΋ଟ͍ • څ༩Λ͍ͨͩ͘෼ɺඇৗʹڝ૪త

Slide 30

Slide 30 text

ւ֎Ͱಇ͖ଓ͚Δ  • ݚڀάϧʔϓ಺֎ͷίϛϡχέʔγϣϯ͕࢓ࣄͷத৺ʹ • ༷ʑͳഎܠΛ΋ͭਓͱڠಉ͢Δ௅ઓ • ྫ͑͹ߦಈج४ͷҧ͍ ʮਓʹ໎࿭Λ͔͚ͳ͍ʯͱ 
 ʮࣗ෼ͩͬͯਓʹ໎࿭Λ͔͚ΔͿΜਓͷ໎࿭ʹ͸׮༰ʹʯ  • ӳޠυΠπޠͰʮڭΘΔʯʮڭ͑Δʯ೉͠͞ͷࠩ

Slide 31

Slide 31 text

ߨԋͷΞ΢τϥΠϯ  5IFPSFUJDBM 1SBDUJDBM 4PDJBM 1FSTPOBM ೔ʑਐԽ͢Δ"* "*ݚڀऀͱ͍͏৬ۀ ਓΛݡ͘͢Δ"* "*ݚڀऀʹͳΔ·Ͱ

Slide 32

Slide 32 text

ਓؒͱ"*ͷΑΓྑ͍ڠௐΛߟ͑Δ  ੜ·Εͳ͕Βͷ αΠϘʔά ਓͷೳྗͷ௿Լ Digital well-being ೴͸ಡॻػೳΛޙఱత ʹ֫ಘ (೴ͷՄ઼ੑ)

Slide 33

Slide 33 text

ະདྷ "* ਓ ਓ "* ݡ͞ ࢲͷݚڀςʔϚ 
 "*ٕज़Ͱਓͷ஌ੑ ֶͼɺߟ͑ɺ఻͑Δྗ Λ֦ு͢Δ

Slide 34

Slide 34 text

਎ମతߦಈ e.g., walking, standing, cycling, sleeping ೝ஌తߦಈ e.g., reading, writing, memorizing, talking ηϯαͱAIͷ૊Έ߹ΘͤͰਓͷߦಈ΍ঢ়ଶΛਪఆ͢Δ ৺ཧతঢ়ଶ
 e.g., interest, workload, con fi dence, fatigue

Slide 35

Slide 35 text

ݚڀ঺հʮֶͿྗʯͷ֦ு  ڵຯ ཧղ౓ ೝ஌ෛՙ ΞΠτϥοΩϯά αʔϞάϥϑ ಡΈฦ͠ ඓ෦ද໘Թ౓ ஫ࢹ S. Ishimaru, et al. Cognitive State Measurement on Learning Materials by Utilizing Eye Tracker and Thermal Camera. Proc. ICDAR HDI 2017, pp. 32–36, 2017. S. Ishimaru, et al. Augmented Learning on Anticipating Textbooks with Eye Tracking. Positive Learning in the Age of Information (PLATO), pp. 387–398, 2018.

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

ΞΠτϥοΩϯά ςΩετ ਓͷ಺తঢ়ଶ 
 ڵຯɾཧղ౓ 
 1MFBTFTVNNBSJ[FUIFGPMMPXJOHUFYU 
 /PUFUIBUUIFSFBEFSJTJOUFSFTUFEJO ϓϩϯϓτ ࢓૊Έ

Slide 39

Slide 39 text

ࢹઢͰ෼͔Βͳ͍୯ޠΛਪఆͯ͠୯ޠாΛࣗಈͰͭ͘Δ ܭଌ͞Εͨࢹઢ ԁͷେ͖͞஫ࢹ࣌ؒ ೉͍͠ͱײͨ͡୯ޠͷਪఆ ΦϨϯδਖ਼ղ৘ใਫ৭ਪఆ݁Ռ େࣾ et al. "ࢹ఺৘ใΛ༻͍ͨओ؍తߴ೉қ౓୯ޠͷਪఆ". ిࢠ৘ใ௨৴ֶձٕज़ݚڀใࠂ, vol. 115, no. 517, PRMU2015-189, pp. 149-153, 2016.

Slide 40

Slide 40 text

ࢹઢͰ֬৴౓Λਪఆͯ͠෮शͷॱ൪Λ࠷దԽ͢Δ ར༻ऀͷֶशσʔλ͕͋Ε͹ͷਫ਼౓ͰਪఆͰ͖Δ ֬৴Λ΋ͨͣʹ౴͑ͯؒҧ͑ͨ໰୊ͷྫ ֬৴Λ΋ͬͯ౴͑ͯؒҧ͑ͨ໰୊ͷྫ S. Ishimaru et al. "Confidence-Aware Learning Assistant". In arXiv preprint arXiv:2102.07312, 2021.

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

ݚڀ঺հʮߟ͑Δྗʯͷ֦ு  S. Ishimaru, et al. The Wordometer 2.0: Estimating the Number of Words You Read in Real Life using Commercial EOG Glasses. Proc. UbiComp 2016 Adjunct, pp. 293–296, 2016. S. Ishimaru, et al. Reading Interventions: Tracking Reading State and Designing Interventions. Proc. UbiComp 2016 Adjunct, pp. 1759–1764, 2016. # 3 - Electrodes Horizontal axis: L - R [mV] Vertical axis: B - (L + R)/2 [mV] ؟ిҐ͔Βࢹઢํ޲Λਪఆ 100% 9:41 AM ػցֶशͰʮಡΜͩ୯ޠͷ਺ʯΛਪఆ Ϣʔβʔʹఏࣔ

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

೥౓ະ౿ࣄۀʮ৺Թܭʯ ηϯαͰه࿥ͨ͠೔ʑͷߦಈϩά͔Β 
 ৺ͷঢ়ଶΛఆྔԽͯ͠දࣔ͢ΔΞϓϦ

Slide 45

Slide 45 text

52% 19% 0% 47% 75% 93% 0% 5% 6% Predicted class low middle high Actual class high middle low BDDVSBDZ S. Ishimaru and K. Kise.“Quantifying the Mental State on the Basis of Physical and Social Activities”. Proc. UbiComp '15 Adjunct, pp. 1217–1220, 2015. ։ൃͷ͖͔͚ͬᶃ ࣗ਎ͷෆௐ͔ΒίϯσΟγϣϯͱηϯασʔλͷؒʹ૬ؔΛൃݟ

Slide 46

Slide 46 text

։ൃͷ͖͔͚ͬᶄ ମͷෆௐ͸ମԹܭͰ෼͔Δ͕ɺ৺ͷෆௐΛଌΔಓ۩͸ଘࡏ͠ͳ͍

Slide 47

Slide 47 text

։ൃͷ͖͔͚ͬᶅ ৺ͷ݈߁ঢ়ଶΛश׳తʹख࡞ۀͰه࿥͢Δ͜ͱ͸ࠔ೉

Slide 48

Slide 48 text

৺Թܭ͸೔ʑͷߦಈྔͷมԽ͔Β৺ͷঢ়ଶΛਪఆ͢Δ  ೖྗ ग़ྗ ؾ෼ ػ 
 ց 
 ֶ 
 श ਎ମߦಈྔ ೝ஌ߦಈྔ ࣾձߦಈྔ ਭ຾ ಛ௃நग़ ׆ྗ iPhone, AppleWatch Fitbit JINS MEME Twitter, Facebook RescueTime ਪఆ

Slide 49

Slide 49 text

։ൃ੒Ռ म࿦ൃදɾະ౿੒Ռใࠂձલͷ༷ࢠ  म࿦ൃද ৺Թܭͳ͠ ະ౿੒Ռใࠂձ ৺Թܭ͋Γ ৺ԹΛνΣοΫ͠ͳ͕Βੜ׆͢Δ͜ͱͰຊ൪·Ͱߴ೤Λ๷͍ͩ

Slide 50

Slide 50 text

*1"/&847PMIUUQTXBSQOEMHPKQJOGPOEMKQQJEXXXJQBHPKQ fi MFTQEG

Slide 51

Slide 51 text

ݚڀ঺հʮ఻͑Δྗʯͷ֦ு  ൃ࿩ɾᰐ͖ɾস͍Λߴਫ਼౓Ͱਪఆ 
 'TDPSF   Τϯήʔδ౓߹͍ ൃ࿩ɾॻهɾ಺৬ Λߴਫ਼౓Ͱਪఆ 
 ϢʔβʔඇґଘͷֶशͰ"DD 'TDPSF Chen, et al. Quantitative Evaluation System for Online Meetings Based on Multimodal Microbehavior Analysis. Sensors and Materials 34 (8), pp. 3017–3027, 2022. Watanabe, et al. EnGauge: Engagement Gauge of Meeting Participants Estimated by Facial Expression and Deep Neural Network IEEE Access, 2023 (Ealy Access).

Slide 52

Slide 52 text

%JTDVTTJPO+PDLFZ %+  #(.ͳ͠ #(.ݻఆ #(.ಈత ఏҊγεςϜ ൃ࿩ྔʹԠ֤ͯࣗ͡ͷ1$ͷ#(.͕มΘΔ ΦϯϥΠϯϛʔςΟϯάγεςϜΛ։ൃ ಛఆͷࢀՃऀ͕஻Γ͗͢ΔͷΛ཈ࢭ Ͱ͖Δ͜ͱΛ࣮ݧͰ໌Β͔ʹͨ͠ H. Suzawa et al.Supporting Smooth Interruption in a Video Conference by Dynamically Changing Background Music Depending on the Amount of Utterance. UbiComp '22 Adjunct

Slide 53

Slide 53 text

ߨԋͷΞ΢τϥΠϯ  5IFPSFUJDBM 1SBDUJDBM 4PDJBM 1FSTPOBM ೔ʑਐԽ͢Δ"* "*ݚڀऀͱ͍͏৬ۀ ਓΛݡ͘͢Δ"* "*ݚڀऀʹͳΔ·Ͱ

Slide 54

Slide 54 text

෺৺͕͍ͭͨͱ͖͔ΒʮཧՊʯ͕޷͖ͩͬͨ  • খֶߍʙߴߍͷཧՊͷ࣮ݧ • ੜ෺ֶΦϦϯϐοΫ • ͓΋͠ΖՊֶίϯςετ • αΠΤϯεΩϟϯϓ • େֶ๚໰ɾΦʔϓϯΩϟϯύε

Slide 55

Slide 55 text

໷ߦόεʹ৐ͬͯ౦େͷΦʔϓϯΩϟϯύεʹߦͬͨ

Slide 56

Slide 56 text

೔ຊ୅ද·Ͱ͋ͱาͩͬͨͷʹ ߴߍͷ)1ʹܝࡌͨ͠ײ૝ΑΓൈਮ ੜ෺ֶΦϦϯϐοΫ̎࣍༧બʢੜ෺νϟϨϯδຊબʣʹࢀՃͰ͖ͯ 
 Ұ൪ྑ͔ͬͨͷ͸ɺಉ͡ࢤΛ࣋ͬͨ༑ୡ͕શࠃʹͨ͘͞ΜͰ͖ͨ͜ͱͰ͢ɻ 
 શࠃ͔Βਓͷੜ෺େ޷͖ਓ͕ؒू·͍ͬͯͨͷͰɺΈΜͳͦΕͧΕ 
 ཱ೿ͳເΛ͍࣋ͬͯ·ͨ͠ɻࢼݧ࠷ऴ೔ʹ͸͓ޓ͍ͷເͱ͔໨ඪΛே·Ͱ 
 ޠΓ໌͔͢͜ͱ͕Ͱ͖ɺͱͯ΋͍͍ܹࢗΛड͚·ͨ͠ʂ

Slide 57

Slide 57 text

ߴߍͰͷߨԋͷޙϝʔϧΛૹ࣭ͬͯ໰ɾେֶ๚໰

Slide 58

Slide 58 text

ੜ෺ͱ޻ֶͷ༥߹ݚڀΛ͢ΔͨΊʹେࡕେֶجૅ޻ֶ෦Λडݧ

Slide 59

Slide 59 text

डݧษڧ

Slide 60

Slide 60 text

डݧʹࣦഊୈࢤ๬ͷେࡕ෎ཱେֶ΁

Slide 61

Slide 61 text

େֶࡇͷ࣮ߦҕһͱͯ͠ϙελʔ΍ϗʔϜϖʔδ੍࡞Λ୲౰

Slide 62

Slide 62 text

νίΫΠΠϫέϩϘ SBDPMUB /'$+VODUJPO LPUPEBNB 3FTU$BTU 4XJQFS ͳͲ झຯͰ࡞ͬͨΞϓϦέʔγϣϯ ΞϧόΠτɾΠϯλʔϯγοϓ େֶ೥य़ɿιϑτ΢ΣΞ։ൃ͕झຯɾΞϧόΠτʹ

Slide 63

Slide 63 text

༑ୡͷձࣾΛख఻ͬͨΓΠϯλʔϯγοϓͰ஥͕ؒͰ͖ͨΓ

Slide 64

Slide 64 text

։ൃͨ͠ΞϓϦαʔϏε  41"..64&6. ໘ന͓͔͍͠໎࿭ϝʔϧΛ ౤ߘ͢ΔϥϯΩϯάαΠτ 4XJQFS εϫΠϓૢ࡞Ͱ௚ײతʹ ૢ࡞Ͱ͖Δ5P%PΞϓϦ 1BMFUUB ϓϩάϥϚͰ΋͍͍ײ͡ͷ৭Λ ͙͢ʹબ΂ΔΧϥʔύϨοτ

Slide 65

Slide 65 text

։ൃͨ͠ΞϓϦαʔϏε  νίΫΠΠϫέϩϘ ໿ଋͷ࣌ؒʹ஗Εͨͱ͖ͷ ݴ͍༁Λݕࡧ͢ΔΞϓϦ 3FTU$BTU ࣍ʹτΠϨʹߦͩ͘Ζ͏ ࣌ؒΛ༧ใ͢ΔΞϓϦ ,PUPEBNB ৸๥Λޙչͨ͠πΠʔτΛूΊͯ ਂ໷ʹͻͨ͢Β౤ߘ͢Δ໎࿭#PU

Slide 66

Slide 66 text

։ൃͨ͠ΞϓϦαʔϏε  νίΫΠΠϫέϩϘ ໿ଋͷ࣌ؒʹ஗Εͨͱ͖ͷ ݴ͍༁Λݕࡧ͢ΔΞϓϦ 3FTU$BTU ࣍ʹτΠϨʹߦͩ͘Ζ͏ ࣌ؒΛ༧ใ͢ΔΞϓϦ ,PUPEBNB ৸๥Λޙչͨ͠πΠʔτΛूΊͯ ਂ໷ʹͻͨ͢Β౤ߘ͢Δ໎࿭#PU ਓͷߦಈ΍ੈͷதͷৗࣝΛม͑Δ΋ͷ͕޷͖ 
 ୭΋͕ϚΠφεͩͱࢥ͍ͬͯΔ΋ͷΛϓϥεʹͰ͖ͳ͍͔

Slide 67

Slide 67 text

େֶ೥ळɿݚڀࣨ഑ଐσβΠϯɾϓϩάϥϛϯά͕໾ཱͭ

Slide 68

Slide 68 text

࡞ͬͨ΋ͷΛݟͤΔ͜ͱͰཹֶͳͲͨ͘͞ΜͷνϟϯεΛ͍͍ͨͩͨ

Slide 69

Slide 69 text

υΠπɾϑϥϯεཹֶͷܦݧΛ௨ͯ͡υΠπ΁ͷब৬ΛܾΊͨ

Slide 70

Slide 70 text

ݚڀऀʹͳΔ·Ͱͷֶͼ  • ࣗ෼͕޷͖ͳ͜ͱͷ࣠Λ࣋ͭ • ΍Γ͍ͨ͜ͱ͸ͲΜͲΜมΘͬͯ΋େৎ෉ • େֶ͸໘ന͍ਓ΍෺ʹग़ձ͑Δ৔ॴ • ͋Ε͜Ε΍͍ͬͯΔͱޙ͔Βܨ͕Δ͜ͱ΋͋Δ • ϐϯνΛνϟϯεʹม׵͢ΔྗʹͳΔ

Slide 71

Slide 71 text

 ࠓ͔Β࢝ΊΒΕΔ͓͢͢Ί͸ʮະ౿δϡχΞʯ • ಠ૑తΞΠσΞͱ୎ӽٕͨ͠ज़Λ࣋ͭ 
 খதߴੜͷ׆ಈΛࢧԉ͢ΔϓϩάϥϜ • ୈҰઢͰ׆༂͢Δઌഐ ະ౿ग़਎ऀ ͔ΒΞυόΠε • ։ൃࢿۚ ্ݶສԁ ͷԉॿ • εʔύʔΫϦΤʔλೝఆ੍

Slide 72

Slide 72 text

·ͱΊ

Slide 73

Slide 73 text

ߨԋͷΞ΢τϥΠϯ  5IFPSFUJDBM 1SBDUJDBM 4PDJBM 1FSTPOBM ೔ʑਐԽ͢Δ"* "*ݚڀऀͱ͍͏৬ۀ ਓΛݡ͘͢Δ"* "*ݚڀऀʹͳΔ·Ͱ

Slide 74

Slide 74 text

"*ݚڀऀʹͳΔͨΊʹ໾ཱͬͨ͜ͱ͸ʁ தֶʙߴߍ  • தֶ೥ੜͷͱ͖ʹେֶͷΦʔϓϯΩϟϯύεʹߦͬͨ • डݧ͸ઌͰ΋ʮେֶʯʮݚڀʯͷΠϝʔδΛ͔ͭΊͨ • ՝֎׆ಈʹࢀՃͨ͠ αΠΤϯεΩϟϯϓɺੜ෺ֶΦϦϯϐοΫFUD  • ڵຯ΍ਐ࿏ͷબ୒ࢶ͕૿͑ͨ۩ମԽͨ͠ • ྭ·͠ڝ͍߹͑Δ༑ਓͱஂମઓͷडݧษڧΛͨ͠ • ୈҰࢤ๬ߍʹ͸ߦ͚ͳ͔͕ͬͨɺʮసΜͰ΋ͨͩͰ͸ى͖ ͳ͍ʯੑ֨΍ݚڀʹඞཁͳجૅӳޠྗͳͲ͕਎ʹ͍ͭͨ ·ͱΊ

Slide 75

Slide 75 text

খ͞ͳ໨ඪΛୡ੒͠ଓ͚Δ  • ʮޙչ͠ͳ͍બ୒ʯͰ͸ͳ͘ʮબ୒Λޙչʹ͠ͳ͍ߦಈʯ • ܭըੑΑΓॊೈੑɻ΍Γ͍ͨ͜ͱ͸ͲΜͲΜมΘ͍͍ͬͯ ·ͱΊ ΢ΥʔλʔϑΥʔϧ։ൃ ΞδϟΠϧ։ൃ

Slide 76

Slide 76 text

"*ݚڀऀʹͳΔʵֶੜ࣌୅ͷ ܦݧ͔Β࠷ઌ୺ͷݚڀ·Ͱʵ ੴؙᠳ໵ େࡕެཱେֶେֶӃ৘ใֶݚڀՊಛ೚ڭत   Ѫඤݝཱࠓ࣏౦த౳ڭҭֶߍ ࣭໰ɾײ૝͓଴͓ͪͯ͠Γ·͢ʂ ࠲ஊձ΍!TIPZBJTIJNBSV!PNVBDKQ΁