Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

About me ● Carlos Justiniano ● VP of Engineering at Flywheel Sports ● 2005 World Record in Distributed Computation ● Leveraging the power of Redis since 2011 @cjus on Github, Twitter, Medium and at flywheelsports.com More about me at http://cjus.me

Slide 3

Slide 3 text

What we’ll cover today A case study involving massive file transfers, Redis, Microservices, job creation and orchestration and Serverless computing using AWS Lambda

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

Broadcasting live from NYC

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

Our video content transfer use case

Slide 14

Slide 14 text

Challenges Quickly migrate our entire video library from one CDN to another: ● Object Storage ● HTTP Live Streaming (HLS) ● Ensuring no file is left behind

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

Begins with a live broadcast Ends with an at-home rider

Slide 17

Slide 17 text

Multiple manifests files pointing to collections of file segments Manifest file Segment files

Slide 18

Slide 18 text

91011213

Slide 19

Slide 19 text

91011213

Slide 20

Slide 20 text

91011213

Slide 21

Slide 21 text

91011213

Slide 22

Slide 22 text

91011213 91007688 91009060 91009473

Slide 23

Slide 23 text

91011213 91007688 91009060 91009473 91012341 91007687 91009062 91011625 91012265 91007686 91007685 91007683 90999930 91009778 91011977 91011943

Slide 24

Slide 24 text

91009062

Slide 25

Slide 25 text

2000 classes 16 streams per class ~500 file* segments per stream *each file segment ranges from 100 bytes to 2 megabytes in size

Slide 26

Slide 26 text

2000 classes 16 streams per class ~500 file* segments per stream 2000 x 16 x 500 = 16,000,000 files *each file segment ranges from 100 bytes to 2 megabytes in size

Slide 27

Slide 27 text

Our Solution ● Pull individual files through the Verizon CDN ● Web crawling manifest files ● Use Redis powered Microservices to orchestrate millions of AWS Lambda invocations

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

Fly Live Ants

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

Redis Messaging and Job Queuing

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

Class scanner code

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

Crawler code

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

Segment-transfer code

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

λ code

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

Seeing the solution in action

Slide 48

Slide 48 text

Completed segment In progress segment

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

End Results

Slide 51

Slide 51 text

End results ● The speed of transferring files using this approach is absolutely staggering. ● During earlier tests, the system transferred four terabytes of data in two hours and twenty minutes! ● That’s roughly 523MB per second! ● Nowhere near the maximum potential. ● Using both a larger multi-core or cluster of multi-core machines and a higher concurrent limit of lambda invocations would yield even higher transfer speeds.

Slide 52

Slide 52 text

Lessons

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

No content