Slide 18
Slide 18 text
1st place solution
384
384
512
512
• contrast: +/- 0.2
• brightness: +/- 20
• hue: +/- 10
• saturation: +/- 20
• rotate: +/- 180
• scale: +/- 0.2
• shear: +/- 0.2
• shift: +/- 0.2
• do_mirror: True
• blur_and_sharpen: True
Resize
Augmentation
Preprocessing
SE-ResNext 50
( 2 seeds, Huber loss, GeM Pooling )
SE-ResNext 101
( 2 seeds, Huber loss, GeM Pooling )
Inception V4
( 2 seeds, Huber loss, GeM Pooling )
Inception ResNet V2
( 2 seeds, Huber loss, GeM Pooling )
Stage 1 Training Stage 2 Training
APTOS IDRiD
Messidor Test
(Public)
Preprocessing
Inception ResNet V2
Inception V4
SE-ResNext 50
SE-ResNext 101
8 models
trained in
the 1st stage
Psuedo Label
(soft)
Special
Pseudo label
Averaging the provided
labels with the predicted
labels from stage1 models
SE-ResNext 50
( 2 seeds, Huber loss, GeM Pooling )
SE-ResNext 101
( 2 seeds, Huber loss, GeM Pooling )
Inception V4
( 2 seeds, Huber loss, GeM Pooling )
Inception ResNet V2
( 2 seeds, Huber loss, GeM Pooling )
Blending
QWK thresholds
[0.7, 1.5, 2.5, 3.5]
Public: 4 th
Public LB 0.850
Private: 1 st
Private LB 0.936
Predict
多彩な data augmentation による汎化性能の向上
2 seeds × 4 models による 8 model ensemble
損失関数は Huber Loss(Smooth L1 Loss)を使用
Psuedo Labeling
https://www.kaggle.com/c/aptos2019-blindness-detection/discussion/108065