Slide 1

Slide 1 text

Fusarium head blight (FHB) in Brazil: what have we learned in 15 years? Emerson M. Del Ponte Prof. Plant Pathology/Epidemiology

Slide 2

Slide 2 text

Major disease of wheat and barley

Slide 3

Slide 3 text

FHB +rain cool +rain warm -rain hot +rain/dry hot Wheat Blast 90% wheat crops (5 million T) Re-emergent in Brazil

Slide 4

Slide 4 text

Photo: Dr. Flávio Santana Embrapa Trigo

Slide 5

Slide 5 text

But also for other crops..

Slide 6

Slide 6 text

Trail (2009) Why does FHB matter? Trail (2009)

Slide 7

Slide 7 text

My FHB research in 6 episodes A new old problem Knowing the enemy The chief species Food in danger Man weapons Statistical modelling Computer simulation Disease forecasting Field surveys Molecular Identification Population genetics Chemistry Immunology Pathogen biology and ecology Plant-pathogen interaction Fungicide efficacy Meta-analysis Economic analysis Failure ahead? Fungicide resistance Phenotypic and molecular 1 2 3 4 5 6

Slide 8

Slide 8 text

Episode one A new old problem

Slide 9

Slide 9 text

Season Yield losses (%) 1984 - 1994 5.4 2000 17.5 2001 13.4 2002 11.6 2003 26.2 2004 12.0 2005 22.2 2007 39.8 2008 23.2 2009 32.2 2010 17.8 A problem is noticed E.M. Reis R.T. Casa

Slide 10

Slide 10 text

Del Ponte et al. (2005) Daily infection risk Why here, why now? How to predict it?

Slide 11

Slide 11 text

Cumulative risk Model testing

Slide 12

Slide 12 text

Cumulative risk Model testing

Slide 13

Slide 13 text

No-till Cumulative risk Growing season (year) Del Ponte et al. (2009) Climate variability effect? no till?

Slide 14

Slide 14 text

9 years 11 locations 37 trials Meta-analysis of damage coefficients

Slide 15

Slide 15 text

= 4,419.5 kg ha-1 = -46.3 kg ha-1 = 2,883.6 kg ha-1 = -46.3 kg ha-1 Damage coefficient = -1.05% pp -1 Damage coefficient = -1.60% pp -1 Estimation of damage coefficients Duffeck et al. (2020)

Slide 16

Slide 16 text

Crop simulation (10 dates x 28 years) FHB index FHB risk Attainable yield Yield losses (FHB) Damage coefficient (Dc) -1.05 % 1980-1989 1990-1999 2000-2007 10.3% 10.2% 5.8% Simulations of historical yield losses Duffeck et al. (2020)

Slide 17

Slide 17 text

FHB index Fungicide spray (1x or 2x) Probability of non-offsetting costs $ Actual yield (Treated) Actual yield (Nontreated) Yield diff. (kg ha-1) Are fungicides profitable? Duffeck et al. (2020)

Slide 18

Slide 18 text

Are two sprays worth? Duffeck et al. (2020)

Slide 19

Slide 19 text

Episode Two Knowing the enemy

Slide 20

Slide 20 text

The rise of a species complex Phylogenetic species recognition based on genealogical concordance

Slide 21

Slide 21 text

FGSC species and trichothecene profile

Slide 22

Slide 22 text

(Scoz et al 2009; Astolfi et al. 2012; Del Ponte et al. 2015) > 850 FGSC strains (5 years) Diverse population of species and toxin types

Slide 23

Slide 23 text

(Del Ponte et al. 2015) Region shaping species distribution?

Slide 24

Slide 24 text

South of Paraná: new surveys > 750 isolates Pereira et al. (2020)

Slide 25

Slide 25 text

Crop and year effect on FGSC composition? Pereira et al. (2020)

Slide 26

Slide 26 text

episode Three Food in danger

Slide 27

Slide 27 text

n = 66 samples 2ppm line Del Ponte et al. (2012) Trichothecenes in wheat: NIV too!

Slide 28

Slide 28 text

Duffeck et al. (2017) DON by state

Slide 29

Slide 29 text

Duffeck et al. (2017) Zearalenone by state

Slide 30

Slide 30 text

Duffeck et al. (2017) UHPLC vs. Elisa kit

Slide 31

Slide 31 text

episode Four The chief species

Slide 32

Slide 32 text

Spolti et al. (2012) Duffeck et al (unpublished) Is F. graminearum more aggressive?

Slide 33

Slide 33 text

Is F. graminearum more aggressive? F. graminearum F. meridionale

Slide 34

Slide 34 text

Machado et al. (unpublished) Is F. graminearum more aggressive?

Slide 35

Slide 35 text

Species x Cultivar = P > 0.05 highly aggressive isolate Mendes et al. (2018) Cultivar x species effect?

Slide 36

Slide 36 text

Nicolli et al. (2015) Chemical analysis Toxigenic potential

Slide 37

Slide 37 text

Sexual fertility 1 Nicolli et al. (2015)

Slide 38

Slide 38 text

38 * * Sexual fertility 2 Machado et al. (Unpublished)

Slide 39

Slide 39 text

Episode four Man weapons

Slide 40

Slide 40 text

Machado et al. (2017) Fungicides do work, but varies with AI

Slide 41

Slide 41 text

Machado et al. (2017) Do they protect yield?

Slide 42

Slide 42 text

+ 102 kg/ha Efficacy (%) Yield gain (kg/ha) Machado et al. (2017) Estimates of mean efficacy and yield gain

Slide 43

Slide 43 text

Does a second spray pay off?

Slide 44

Slide 44 text

QoI + DMI mixtures: are they worth? Barro et al. (2020)

Slide 45

Slide 45 text

Yield gain from using mixtures? Barro et al. (2020)

Slide 46

Slide 46 text

Effect size Yield Return (%) Fungicidea kb D SE(D) CI L c CI U c P value Y CI L c CI U c PYRA + METC 70 532.08 46.40 441.14 623.02 <0.0001 17.17 14.30 20.11 TFLX + PROT 45 494.99 45.09 406.60 583.38 <0.0001 16.21 13.14 19.37 TEBU 25 448.20 54.04 342.27 554.13 <0.0001 14.68 11.24 18.22 AZOX + TEBU 25 462.43 48.92 366.53 558.32 <0.0001 14.74 11.54 18.02 TFLX + TEBU 40 468.24 42.43 385.08 551.41 <0.0001 14.66 11.92 17.46 PYRA + METC 1X 23 413.72 53.66 308.53 518.90 <0.0001 12.97 9.70 16.35 Estimates of mean efficacy and yield gain Barro et al. (2020)

Slide 47

Slide 47 text

Show me the money again Barro et al. (2020)

Slide 48

Slide 48 text

episode six Failure ahead?

Slide 49

Slide 49 text

EC50 levels for 50 strains from RS Spolti et al. (2012) Sensitivity to Triazoles (TEBU and METC)

Slide 50

Slide 50 text

EC50 levels for 35 strains R2 R1 R2 Machado et al. (unpublished) Sensitivity to TEBU and Carbendazim

Slide 51

Slide 51 text

F. graminearum less sensitive to TEBU Machado et al. (unpublished) R2 R1 R2 F. graminearum others F. graminearum others 15-ADON 15-ADON 15-ADON Are EC50 dependent on FGSC species?

Slide 52

Slide 52 text

Check Check Check Fungicide Fungicide Fungicide Less sensitive isolates Sensitive isolate Does it affect control efficacy?

Slide 53

Slide 53 text

1. Previous crop not important risk factor in the subtropics (no-till) 2. At least two important species/chemotypes to concern 3. DON and NIV should be a target in surveys (only DON now) 4. One seems more adapted to wheat environments (F. graminearum) 5. Breeders should use the most aggressive strains Lessons learned

Slide 54

Slide 54 text

6. One spray of tebuconazole is a cost-effective choice (yield) 7. Premixes (DMI+QoI) likely do not break even on costs 8. The pathogen may be adapting to fungicides - future concern? Lessons learned

Slide 55

Slide 55 text

Open FGSC database

Slide 56

Slide 56 text

Cooperative trial network

Slide 57

Slide 57 text

Key Collaborators Dr. J. Maurício Fernandes Dr. Gary Bergstrom Dr. Willingthon Pavan Dr. Dauri Tessmann Dr. Todd Ward Dr. Eliana Furlong Dr. Casiane Tibola Dr. Flávio Santana Dr. Lisa Vaillancourt Graduate Students (2008 - now) Paula Astolfi Piérri Spolti Paulo R. Kuhnem Jr. Camila Nicolli Gabriela Mendes Franklin Machado Maíra Duffeck Jhonatan Barro Acknowledgements

Slide 58

Slide 58 text

Thank you! @edelponte