Slide 1

Slide 1 text

ISM✻@ST Intro Talk IV In which Chris needs to average 1 slide every 11.8 seconds – good luck everyone! Chris Clark

Slide 2

Slide 2 text

Chris Clark Clark & Redfern (1988) Helston

Slide 3

Slide 3 text

Chris Clark Cardiff

Slide 4

Slide 4 text

Chris Clark

Slide 5

Slide 5 text

Chris Clark

Slide 6

Slide 6 text

Chris Clark

Slide 7

Slide 7 text

Chris Clark

Slide 8

Slide 8 text

Chris Clark

Slide 9

Slide 9 text

Chris Clark Dust in Type-Ia SNe? Gomez & Clark+ (2012a); Clark (PhD T., 2015) Kepler’s Supernova (SN1604) Tycho’s Supernova (SN1572) (optical & X-ray images)

Slide 10

Slide 10 text

Chris Clark Herschel Maps of Type-Ia SNe Remnants Gomez & Clark+ (2012a); Clark (PhD T., 2015) Tycho’s SNR in Herschel-SPIRE (250, 350, 500 μm) Kepler’s SNR in Herschel-SPIRE (250, 350, 500 μm) Negligible dust manufactured by Type-Ia supernovæ Which means all the iron depleted into dust got there some other way

Slide 11

Slide 11 text

Chris Clark Dust in a Type-II SN: The Crab (SN1054) Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Herschel-PACS (70, 100, 160 μm) Herschel-SPIRE (250, 350, 500 μm)

Slide 12

Slide 12 text

Chris Clark Dust in a Type-II SN: The Crab (SN1054) Clark (PhD T., 2015)

Slide 13

Slide 13 text

Chris Clark The Crab: Component Separation Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Synchrotron @ 160 μm Hot dust @ 160 μm Cold dust @ 160 μm We found 0.11 M☉ of supernova dust in the Crab Nebula Subsequent studies report values across 0.04–0.22 M☉ range

Slide 14

Slide 14 text

Chris Clark Herschel-ATLAS (Herschel Astrophysical Terahertz Large Area Survey) Eales+ (2010)

Slide 15

Slide 15 text

Chris Clark Dust-Detected H-ATLAS Low-z Galaxies Clark+ (2015) H-ATLAS 250 µm 15 < D < 45 Mpc SDSS gri-bands

Slide 16

Slide 16 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Eales+ (2010); Clark+ (2015) More Attenuation Less Attenuation Dust Rich Dust Poor

Slide 17

Slide 17 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Clark+ (2015) MD /MS ~ 0.0005 MD /MS ~ 0.01

Slide 18

Slide 18 text

Chris Clark BADGRS: The Peak of Dust-Richness Clark+ (2015) Older Younger Dust Rich Dust Poor

Slide 19

Slide 19 text

Chris Clark BADGRS: Super Low MH2 /Mdust ? Dunne+ (2018) IRAM 30m CO(1–0) ICO = 0.2–2 K km s-1 FWHM = 30–100 km s-1 MH2 /Mdust = 2–27 (Z-based XCO – MW XCO ) Z = 0.5–1 Z☉

Slide 20

Slide 20 text

Chris Clark BADGR Follow-Up: BEAST Hubble AR? More Attenuation Less Attenuation 1e-4 0.001 0.01 Dust Mass / Stellar Mass 0.2 0.5 1 2 5 1 0 2 0 5 0 100 200 500 1000 IRX All LTGs BADGRs NGC4449 NGC7793 M31 M33 3 4 5 FUV-Ks (mag) NGC4449 NGC7793

Slide 21

Slide 21 text

Chris Clark Biology‽

Slide 22

Slide 22 text

Chris Clark DustPedia Database Davies+ (2017); Clark+ (2018) • The DustPedia sample (Davies+, 2017) covers all 875 nearby (D<40 Mpc) extended (1’ < D25 < 1°) galaxies observed by Herschel. • Standardised imagery & photometry spanning 42 UV–microwave bands (Clark+, 2018). • Homogenised atomic & molecular gas values for 764 & 255 DustPedia galaxies respectively (; De Vis+, 2019; Casasola+, 2020). • 10000 consistently-determined gas- phase metallicity datapoints (from IFU, slit, and fibre spectra) for 492 DustPedia galaxies (De Vis+, 2019). UV-NIR-FIR montage of some of the galaxies in the DustPedia database

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

Chris Clark Maps of κd in Nearby Galaxies! Clark+ (2018); Clark+ (2019) M74 κd map M83 κd map UV-NIR-FIR image for reference UV-NIR-FIR image for reference

Slide 25

Slide 25 text

Chris Clark κd vs ISM Surface Density Clark+ (2018); Clark+ (2019) Appears that κd is anticorrelated with ISM density. Opposite of what is predicted by models…

Slide 26

Slide 26 text

Chris Clark Metallicity Mapping in Nearby Galaxies Clark+ (2019); De Vis+ (2019) Lots of individual metallicity points from individual metallicity spectra. But need to turn into metallicty map… M74 M83

Slide 27

Slide 27 text

Chris Clark Gaussian Process Regression in M74 Clark+ (2019); De Vis+ (2019) M74 Metallicity Map M74 Metallicity Uncertainty

Slide 28

Slide 28 text

Chris Clark M74 & M83 κd Compared to Literature Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019)

Slide 29

Slide 29 text

Chris Clark Clark+ (2021) Emission on large angular scales removed from Herschel maps during the data reduction Herschel data therefore missing lowest density ISM, whilst IRAS (& Planck) data missing highest density ISM Extended Emission Missing from Herschel IRAS 100 μm 300” resolution Herschel 100 μm 10” resolution

Slide 30

Slide 30 text

Chris Clark Combine Alllll the Data in Fourier Space… Clark+ (in prep.)

Slide 31

Slide 31 text

Chris Clark Restoring Extended Emission by Feathering Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.) Herschel only; little diffuse emission Herschel et al; Fourier-combined

Slide 32

Slide 32 text

Chris Clark Relative Difference When Feathering Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.) LMC SMC M31 M33

Slide 33

Slide 33 text

Large Magellanic Cloud Warm dust Cold dust Hydrogen Image & press release at AAS 240!

Slide 34

Slide 34 text

Warm dust Cold dust Hydrogen 100% not to scale

Slide 35

Slide 35 text

Chris Clark SED Fitting with our New Herschel Data Clark+ (in prep.); Gordon+ (2014) Dust Density Dust Temperature β2 β1 Break Wavelength 500um Excess Every pixel’s Spectral Energy Distribution (SED) fit using a broken- emissivity modified blackbody model. (Note, these figures are rotated 90° clockwise from North.) LMC SMC M31 M33

Slide 36

Slide 36 text

Chris Clark Pixel-by-Pixel Dust-to-Gas Ratio Clark+ (in prep)

Slide 37

Slide 37 text

Chris Clark Strong Evolution in G/D versus Density Clark+ (in prep.) Over 1 dex increases in G/D with density suggest very significant grain growth H surface density values on x-axis have been corrected for inclination. We can probe to 10x higher densities in LMC and SMC, because they are ~10x closer than M31 and M33, hence have ~10x better density resolution.

Slide 38

Slide 38 text

Chris Clark Variation in the Dust-to-Gas Ratio (D/G) Roman-Duval+ (subm.); Clark+ (in prep.); De Vis+ (2019); Galliano+ (2018); Remy-Ruyer+ (2014) ◆D/G from UV ⬟D/G from previous FIR ⬢D/G from our new FIR

Slide 39

Slide 39 text

Chris Clark Looking for Extinction in Leo P with BEAST Clark+ (in prep.) Leo P

Slide 40

Slide 40 text

Chris Clark Stacking AGB Stars Scicluna+ (subm.); Clark+ (in prep.) Radial profile of Planck 350 μ m stack Very-work-in-progress stacked SED Planck 350 μm stack

Slide 41

Slide 41 text

Chris Clark Carbon Depletions via 158um [CII] Absorption Jenkins (2009); Clark+ (in prep.) RIP?

Slide 42

Slide 42 text

Chris Clark Obligatory Mountain Photo Clark & Werrell (2022)

Slide 43

Slide 43 text

Questions welcome!

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

Chris Clark The Crab: Synchrotron Power Law Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Spectral index map

Slide 46

Slide 46 text

Chris Clark BADGRS: Blue & Dusty Gas Rich Sources Clark+ (2015) Near-IR VIKING Ks Optical SDSS gri H-ATLAS 250 µm GALEX Far-UV Very blue (flux ratio FUV/Ks > 25), flocculent, HI-dominated galaxies make up the majority of a blind low-z blind 250 µm selected survey.

Slide 47

Slide 47 text

Chris Clark BADGRS: The Peak of Dust-Richness Clark+ (2015); De Vis (2017) Older Younger Dust Rich Dust Poor

Slide 48

Slide 48 text

Chris Clark BADGRS: Many Chemical Evolution Paths? De Vis+ (2017); Schofield (PhD T., 2017) Older Younger Dust Rich Dust Poor

Slide 49

Slide 49 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Schofield (PhD, 2017) BADGR Non-BADGR

Slide 50

Slide 50 text

Chris Clark BADGRS: Star Formation Still Ramping Up Schofield (PhD T., 2017)

Slide 51

Slide 51 text

Chris Clark DustPedia Photometry Clark+ (2018) Robust automated aperture photometry for extended sources.

Slide 52

Slide 52 text

Chris Clark DustPedia Photometry Clark+ (2018) Self-consistent photometry across many bands.

Slide 53

Slide 53 text

Chris Clark Data for Mapping κd Within Galaxies Clark+ (2018); Clark+ (2019) M83 M74 But also need metallicity maps to calculate κd . These don’t normally exist for nearby galaxies…

Slide 54

Slide 54 text

Chris Clark Alternate Models Clark+ (2019) M74 DTM ∝ radius DTM ∝ ISM density “Toy” model M83 CHAOS Z

Slide 55

Slide 55 text

Chris Clark Alternate Models Clark+ (2019) DTM ∝ radius DTM ∝ ISM density “Toy” model

Slide 56

Slide 56 text

Chris Clark CO r2:1 Regression Leroy+ (2012); Clark+ (2019)

Slide 57

Slide 57 text

Chris Clark SED-Fitting Example Clark+ (2019)

Slide 58

Slide 58 text

Chris Clark Dust-to-Metals in THEMIS Jones+ (2017); Jones+ (2018) Dust-to-metals expected to vary by factor of ~3.6 in THEMIS dust model (Jones+ 2017;2018). Table 3 from Jones+ (2018)

Slide 59

Slide 59 text

Chris Clark Gaussian Process Regression – Reliable! Clark+ (2019); De Vis+ (2019)

Slide 60

Slide 60 text

Chris Clark Some Bands Observed at All Scales Clark+ (in prep.) COBE 100 µm IRAS 100 µm COBE feathered with IRAS COBE feathered with IRAS

Slide 61

Slide 61 text

Chris Clark Feathering In-Out Simulations Clark+ (in prep.)

Slide 62

Slide 62 text

Chris Clark Foreground Subtraction Roman-Duval+ (2017); Clark+ (in prep.)

Slide 63

Slide 63 text

Chris Clark D/G Turnover Caused by Falling ⍺CO ? Clark+ (2021)

Slide 64

Slide 64 text

Chris Clark D/G Evolution vs Ionised Gas Density Clark+ (2021)

Slide 65

Slide 65 text

Chris Clark D/G Evolution with Degraded Resolution Clark+ (2021)

Slide 66

Slide 66 text

Chris Clark Dust MAC Falls at Higher Density? Clark+ (in prep.); Clark+ (2019) Fainter points: Dust mass absorption coefficient is constant Bold points: Dust mass absorption coefficient falls according to power law of -0.4 above a transition density (M31 & M33 transition density = 4 M⊙ pc-2 LMC transition density = 40 M⊙ pc-2)

Slide 67

Slide 67 text

Chris Clark 50 Control Stacks on ‘Shuffled’ Positions Actual NESS positions Random shuffle 1 Random shuffle 2 Random shuffle 3 Coords are shuffled to random positions offset in Galactic longitude, between -10 and +10 deg (but not within 1.5 deg of actual source coord).

Slide 68

Slide 68 text

Chris Clark Real Stack vs Control Stacks Real Planck 350um stack 11 Planck 350um control stacks (examples from the 50 total control stacks)