Slide 8
Slide 8 text
h−1(−1) h−1(0) h−1(1)
u
v1
v2
u
v1
v2
g(θ, x) = uv1
x1
+ uv2
x2
x1
x2
θ = (u, v1
, v2
)
h(θ) = v2
1
+ v2
2
− u2
Conserved function:
Neural network 2D 1D, 1 hidden neuron:
→
Independent conservation laws
hk,k′

(U, V) = ⟨uk
, uk′

⟩ − ⟨vk
, vk′

⟩
Linear networks ReLu networks
σ(s) = max(s,0)
σ(s) = s
hk
(U, V) = ∥uk
∥2 − ∥vk
∥2
How many? Determine them?
(h1
, …, hK
) conserved ⟹ Φ(h1
, …, hK
) conserved
Independence: ∀θ, (∇h1
(θ), …, ∇hK
(θ)) are independent
g(θ, x) := Uσ(V⊤x) = ∑
k
uk
σ(⟨x, vk
⟩)
Example: θ = (U, V)
σ
σ
5 /15