Slide 1

Slide 1 text

Gabriel Peyré É C O L E N O R M A L E S U P É R I E U R E Sibylle Marcotte Remi Gribonval Conservation Laws for Gradient Flows

Slide 2

Slide 2 text

Conservation laws Finding conservation laws Have we found them all? Ferdinand Georg Frobenius Sophus Lie

Slide 3

Slide 3 text

g(θ, x) := Uσ(V⊤x) = ∑ k uk σ(⟨x, vk ⟩) Conservation laws ℰY X (θ) := 1 N N ∑ i=1 ℓ(g(θ, xi ), yi ) Neural network (2 layers): θ = (U, V) σ U V⊤ x g(θ, x) Empirical risk minimization: 3 /15

Slide 4

Slide 4 text

θ(t) −∇ℰ Y X argmin(ℰ Y X ) g(θ, x) := Uσ(V⊤x) = ∑ k uk σ(⟨x, vk ⟩) Conservation laws ℰY X (θ) := 1 N N ∑ i=1 ℓ(g(θ, xi ), yi ) Neural network (2 layers): θ = (U, V) σ U V⊤ x g(θ, x) Empirical risk minimization: Conservation law : h(θ) ∀X, Y, t, θ(0), h(θ(t)) = h(θ(0)) · θ(t) = − ∇ℰY X (θ(t)) Gradient flow: Understanding implicit bias of gradient descent. Applications: Helping to prove convergence. 3 /15

Slide 5

Slide 5 text

Homogeneity matters 4 /15 g(θ, x) := uσ(vx) 1-D with 1 neuron: g(θ, ⋅ ) : ℝ → ℝ Proposition: σ(s) = { a|s|k if s > 0 b|s|k if s < 0 there exists conservation laws if and only if is positively -homogeneous σ k Conservation laws are h(u, v) = Φ( u2 2 − v2 k ) s σ(s) k = 1 s σ(s) k = 2

Slide 6

Slide 6 text

Independent conservation laws hk,k′  (U, V) = ⟨uk , uk′  ⟩ − ⟨vk , vk′  ⟩ Linear networks ReLu networks σ(s) = max(s,0) σ(s) = s hk (U, V) = ∥uk ∥2 − ∥vk ∥2 g(θ, x) := Uσ(V⊤x) = ∑ k uk σ(⟨x, vk ⟩) Example: θ = (U, V) σ σ 5 /15

Slide 7

Slide 7 text

h−1(−1) h−1(0) h−1(1) u v1 v2 u v1 v2 g(θ, x) = uv1 x1 + uv2 x2 x1 x2 θ = (u, v1 , v2 ) h(θ) = v2 1 + v2 2 − u2 Conserved function: Neural network 2D 1D, 1 hidden neuron: → Independent conservation laws hk,k′  (U, V) = ⟨uk , uk′  ⟩ − ⟨vk , vk′  ⟩ Linear networks ReLu networks σ(s) = max(s,0) σ(s) = s hk (U, V) = ∥uk ∥2 − ∥vk ∥2 g(θ, x) := Uσ(V⊤x) = ∑ k uk σ(⟨x, vk ⟩) Example: θ = (U, V) σ σ 5 /15

Slide 8

Slide 8 text

h−1(−1) h−1(0) h−1(1) u v1 v2 u v1 v2 g(θ, x) = uv1 x1 + uv2 x2 x1 x2 θ = (u, v1 , v2 ) h(θ) = v2 1 + v2 2 − u2 Conserved function: Neural network 2D 1D, 1 hidden neuron: → Independent conservation laws hk,k′  (U, V) = ⟨uk , uk′  ⟩ − ⟨vk , vk′  ⟩ Linear networks ReLu networks σ(s) = max(s,0) σ(s) = s hk (U, V) = ∥uk ∥2 − ∥vk ∥2 How many? Determine them? (h1 , …, hK ) conserved ⟹ Φ(h1 , …, hK ) conserved Independence: ∀θ, (∇h1 (θ), …, ∇hK (θ)) are independent g(θ, x) := Uσ(V⊤x) = ∑ k uk σ(⟨x, vk ⟩) Example: θ = (U, V) σ σ 5 /15

Slide 9

Slide 9 text

Conservation laws Finding conservation laws Have we found them all? Ferdinand Georg Frobenius Sophus Lie

Slide 10

Slide 10 text

∇h(θ) W(θ) {θ : h(θ) = h(θ(0))} Structure of the Flow Fields W(θ) := Span {∇ℰY X (θ) : ∀X, Y} Proposition: h conserved ⇔ ∀θ, ∇h(θ) ⊥ W(θ) Tangent space: 7 /15 · θ(t) = w(θ(t)) where w(θ) ∈ W(θ)

Slide 11

Slide 11 text

∇h(θ) W(θ) {θ : h(θ) = h(θ(0))} Structure of the Flow Fields W(θ) := Span {∇ℰY X (θ) : ∀X, Y} Proposition: h conserved ⇔ ∀θ, ∇h(θ) ⊥ W(θ) Tangent space: Proposition: W(θ) = Span⋃ x Im[∂θ g(θ, x)⊤] Question: determining W(θ) 7 /15 · θ(t) = w(θ(t)) where w(θ) ∈ W(θ) Hypothesis: Span y ∇ℓ(z, y) = whole space. Example: ℓ(z, y) = ∥z − y∥2 ∇ℰY X (θ) = 1 N N ∑ i=1 ∂θ g(θ, xi )⊤αi Chain rule: where αi = ∇ℓ(g(θ, xi ), yi )

Slide 12

Slide 12 text

Minimal Parameterizations Re-parameterization: g(θ, x) = f(φ(θ), x) removes invariances. Linear networks: g(θ, x) = UV⊤x φ(U, V) = UV⊤ ReLu networks: g(θ, x) = ∑ i ui ReLu(⟨vi , x⟩) = ∑ i 1⟨vi ,x⟩≥0 (ui v⊤ i )x φ(U, V) = (ui v⊤ i )i (valid only locally) 8 /15 φ(θ) = (φ1 (θ), φ2 (θ), …)

Slide 13

Slide 13 text

Minimal Parameterizations Re-parameterization: g(θ, x) = f(φ(θ), x) removes invariances. Linear networks: g(θ, x) = UV⊤x φ(U, V) = UV⊤ ReLu networks: g(θ, x) = ∑ i ui ReLu(⟨vi , x⟩) = ∑ i 1⟨vi ,x⟩≥0 (ui v⊤ i )x φ(U, V) = (ui v⊤ i )i (valid only locally) 8 /15 φ(θ) = (φ1 (θ), φ2 (θ), …) W(θ) = Wg (θ) := Span⋃x Im[∂θ g(θ, x)⊤] = ∂φ(θ)⊤ Span⋃x Im[∂θ f(θ, x)⊤] := Wf (θ) chain rule

Slide 14

Slide 14 text

Minimal Parameterizations Re-parameterization: g(θ, x) = f(φ(θ), x) removes invariances. Linear networks: g(θ, x) = UV⊤x φ(U, V) = UV⊤ ReLu networks: g(θ, x) = ∑ i ui ReLu(⟨vi , x⟩) = ∑ i 1⟨vi ,x⟩≥0 (ui v⊤ i )x φ(U, V) = (ui v⊤ i )i (valid only locally) 8 /15 φ(θ) = (φ1 (θ), φ2 (θ), …) ⟺ Finite dimensional set of vector fields → Definition: is minimal if is the whole space φ Wf (θ) W(θ) = Span(∇φ1 (θ), ∇φ2 (θ), …) W(θ) = Wg (θ) := Span⋃x Im[∂θ g(θ, x)⊤] = ∂φ(θ)⊤ Span⋃x Im[∂θ f(θ, x)⊤] := Wf (θ) chain rule

Slide 15

Slide 15 text

Minimal Parameterizations Re-parameterization: g(θ, x) = f(φ(θ), x) removes invariances. Linear networks: g(θ, x) = UV⊤x φ(U, V) = UV⊤ ReLu networks: g(θ, x) = ∑ i ui ReLu(⟨vi , x⟩) = ∑ i 1⟨vi ,x⟩≥0 (ui v⊤ i )x φ(U, V) = (ui v⊤ i )i Theorem: σ = Id, φ(U, V) = UV⊤ For σ = ReLu, φ(U, V) = (ui v⊤ i )i are minimal Outside a set of 0 measure for ReLu. (valid only locally) 8 /15 φ(θ) = (φ1 (θ), φ2 (θ), …) ⟺ Finite dimensional set of vector fields → Definition: is minimal if is the whole space φ Wf (θ) W(θ) = Span(∇φ1 (θ), ∇φ2 (θ), …) W(θ) = Wg (θ) := Span⋃x Im[∂θ g(θ, x)⊤] = ∂φ(θ)⊤ Span⋃x Im[∂θ f(θ, x)⊤] := Wf (θ) chain rule

Slide 16

Slide 16 text

u v1 v2 θ(t) −∇ℰ Y X argmin(ℰ Y X ) Example: 1 hidden neuron 9 /15 φ1 (u, v1 , v2 ) = uv1 ∇φ1 (u, v1 , v2 ) = (v1 , u,0) g(θ, x) = uv1 x1 + uv2 x2 u v1 v2 x1 x2 h(θ) = v2 1 + v2 2 − u2 Conserved function: Neural network 2D 1D: → ℰY X (θ) = (uv1 x1 + uv2 x2 − y)2 φ2 (u, v1 , v2 ) = uv2 ∇φ2 (u, v1 , v2 ) = (v2 ,0,u)

Slide 17

Slide 17 text

∇h(θ) W (θ) {θ : h(θ) = h(θ(0))} Constructing Conservation Laws 10/15 Consequence: h conserved ⇔ ∀i, ⟨∇φi (θ), ∇h(θ)⟩ = 0 Minimal parameterization : φ W(θ) = Span(∇φ1 (θ), ∇φ2 (θ), …)

Slide 18

Slide 18 text

∇h(θ) W (θ) {θ : h(θ) = h(θ(0))} Constructing Conservation Laws 10/15 Consequence: h conserved ⇔ ∀i, ⟨∇φi (θ), ∇h(θ)⟩ = 0 Minimal parameterization : φ W(θ) = Span(∇φ1 (θ), ∇φ2 (θ), …) φ(u, v) = uv⊤ W(u, v) = Span M {(Mv, M⊤u)} ∂φ(u, v)⊤ : M ↦ (Mv, M⊤u) ⇔ ∇u h(u, v)v⊤ + u∇v h(u, v)⊤ = 0 Example: single neuron Only solutions: h(u, v) = Φ(∥u∥2 − ∥v∥2) conserved h

Slide 19

Slide 19 text

∇h(θ) W (θ) {θ : h(θ) = h(θ(0))} Constructing Conservation Laws 10/15 Consequence: h conserved ⇔ ∀i, ⟨∇φi (θ), ∇h(θ)⟩ = 0 Minimal parameterization : φ For a polynomial , restricting the search to fixed degree polynomials : φ h finite dimensional linear kernel. → W(θ) = Span(∇φ1 (θ), ∇φ2 (θ), …) φ(u, v) = uv⊤ W(u, v) = Span M {(Mv, M⊤u)} ∂φ(u, v)⊤ : M ↦ (Mv, M⊤u) ⇔ ∇u h(u, v)v⊤ + u∇v h(u, v)⊤ = 0 Example: single neuron Only solutions: h(u, v) = Φ(∥u∥2 − ∥v∥2) conserved h

Slide 20

Slide 20 text

Conservation laws Finding conservation laws Have we found them all? Ferdinand Georg Frobenius Sophus Lie

Slide 21

Slide 21 text

Did we found all the conservation laws? Question: find a "minimal" surface tangent to all . Σ W(θ) Issue: in general, impossible! dim(Σ) = dim(W(θ)) Σ W(θ) θ(t) 12/15

Slide 22

Slide 22 text

Did we found all the conservation laws? Question: find a "minimal" surface tangent to all . Σ W(θ) Issue: in general, impossible! dim(Σ) = dim(W(θ)) Definition: Lie brackets [w1 , w2 ](θ) := ∂w1 (θ)w2 (θ) − ∂w2 (θ)w1 (θ) · θ = w2 (θ) · θ = w 1 (θ) if = [w1 , w2 ] = 0 Σ W(θ) θ(t) Sophus Lie 12/15

Slide 23

Slide 23 text

Did we found all the conservation laws? Question: find a "minimal" surface tangent to all . Σ W(θ) Issue: in general, impossible! dim(Σ) = dim(W(θ)) Definition: Lie brackets [w1 , w2 ](θ) := ∂w1 (θ)w2 (θ) − ∂w2 (θ)w1 (θ) · θ = w2 (θ) · θ = w 1 (θ) if = [w1 , w2 ] = 0 Σ W(θ) θ(t) Ferdinand Georg Frobenius Sophus Lie 12/15 Theorem: there exists with . Σ dim(Σ) = dim(W(θ)) W(θ) = Span(wi (θ))i If , then ∀(i, j), [wi , wj ](θ) ∈ W(θ)

Slide 24

Slide 24 text

Did we found all the conservation laws? Question: find a "minimal" surface tangent to all . Σ W(θ) Issue: in general, impossible! dim(Σ) = dim(W(θ)) Definition: Lie brackets [w1 , w2 ](θ) := ∂w1 (θ)w2 (θ) − ∂w2 (θ)w1 (θ) · θ = w2 (θ) · θ = w 1 (θ) if = [w1 , w2 ] = 0 Σ W(θ) θ(t) [wi , wj ](θ) ∉ W(θ) Linear networks ReLu networks [wi , wj ](θ) ∈ W(θ) Ferdinand Georg Frobenius Sophus Lie 12/15 Theorem: there exists with . Σ dim(Σ) = dim(W(θ)) W(θ) = Span(wi (θ))i If , then ∀(i, j), [wi , wj ](θ) ∈ W(θ)

Slide 25

Slide 25 text

Did we found all the conservation laws? Question: find a "minimal" surface tangent to all . Σ W(θ) Issue: in general, impossible! dim(Σ) = dim(W(θ)) Definition: Generated Lie algebra : W∞ W0 (θ) = W(θ) Wk+1 = Span([W0 , Wk ] + Wk ) Definition: Lie brackets [w1 , w2 ](θ) := ∂w1 (θ)w2 (θ) − ∂w2 (θ)w1 (θ) · θ = w2 (θ) · θ = w 1 (θ) if = [w1 , w2 ] = 0 Σ W(θ) θ(t) [wi , wj ](θ) ∉ W(θ) Linear networks ReLu networks [wi , wj ](θ) ∈ W(θ) Ferdinand Georg Frobenius Sophus Lie 12/15 Theorem: there exists with . Σ dim(Σ) = dim(W(θ)) W(θ) = Span(wi (θ))i If , then ∀(i, j), [wi , wj ](θ) ∈ W(θ)

Slide 26

Slide 26 text

separability Number of Conservation Laws 13/15 Theorem: if is locally constant, dim(W∞ (θ)) = K there are exactly independent conservation laws. d − K ReLu networks Linear networks φ(U, V) = UV⊤ φ(U, V) = (ui v⊤ i )i φ(u, v) = uv⊤ sub-case r = 1

Slide 27

Slide 27 text

separability Number of Conservation Laws 13/15 Theorem: if is locally constant, dim(W∞ (θ)) = K there are exactly independent conservation laws. d − K ReLu networks Linear networks φ(U, V) = UV⊤ φ(U, V) = (ui v⊤ i )i φ(u, v) = uv⊤ φ : (U, V) ↦ UV⊤ r := rank(U; V) Proposition: given , one has W0 (θ) = Span(∇φ1 (θ), ∇φ2 (θ), …) W0 ⊊ W1 = Span([W0 , W0 ] + W0 ) W1 = W2 = Span([W0 , W1 ] + W1 ) = W3 = … = W∞ Explicit formula dim(W∞ ) = (n + m)r − r(r + 1)/2 (except for ) r = 1 sub-case r = 1

Slide 28

Slide 28 text

separability Number of Conservation Laws 13/15 Theorem: if is locally constant, dim(W∞ (θ)) = K there are exactly independent conservation laws. d − K ReLu networks Linear networks φ(U, V) = UV⊤ φ(U, V) = (ui v⊤ i )i φ(u, v) = uv⊤ Corollary: for ReLu and linear networks, no other conservation laws. Proposition: hk,k′  (U, V) = ⟨uk , uk′  ⟩ − ⟨vk , vk′  ⟩ define independent conservations laws. r(r + 1)/2 φ : (U, V) ↦ UV⊤ r := rank(U; V) Proposition: given , one has W0 (θ) = Span(∇φ1 (θ), ∇φ2 (θ), …) W0 ⊊ W1 = Span([W0 , W0 ] + W0 ) W1 = W2 = Span([W0 , W1 ] + W1 ) = W3 = … = W∞ Explicit formula dim(W∞ ) = (n + m)r − r(r + 1)/2 (except for ) r = 1 sub-case r = 1

Slide 29

Slide 29 text

Momentum Flows 14/15 ·· θ(t) + τ(t) · θ(t) = − ∇ℰ(θ(t)) Heavy ball τ(t) = τ Nesterov τ(t) = 3/t3 Conservation laws depends on speed & time! h(θ, · θ, t)

Slide 30

Slide 30 text

Momentum Flows 14/15 ·· θ(t) + τ(t) · θ(t) = − ∇ℰ(θ(t)) Heavy ball τ(t) = τ Nesterov τ(t) = 3/t3 Conservation laws depends on speed & time! h(θ, · θ, t)

Slide 31

Slide 31 text

Momentum Flows 14/15 Emmy Noether ·· θ(t) + τ(t) · θ(t) = − ∇ℰ(θ(t)) Heavy ball τ(t) = τ Nesterov τ(t) = 3/t3 Conservation laws depends on speed & time! h(θ, · θ, t) Lagrangian: ∫ L(θ(t), · θ(t), t)dt L(θ, v, t) := eτt(∥v∥2 2 − ℰ(θ)) Finding conservation laws: apply Noether theorem can only leverage orthogonal invariance! → anti-symmetric, ∀A h(θ, · θ, t) := e∫t 0 τ(⟨ · U, VA⟩ + ⟨ · V, UA⟩) Theorem: for , the conservation laws are φ(θ) = UV⊤

Slide 32

Slide 32 text

Momentum Flows 14/15 Emmy Noether ·· θ(t) + τ(t) · θ(t) = − ∇ℰ(θ(t)) Heavy ball τ(t) = τ Nesterov τ(t) = 3/t3 Conservation laws depends on speed & time! h(θ, · θ, t) Lagrangian: ∫ L(θ(t), · θ(t), t)dt L(θ, v, t) := eτt(∥v∥2 2 − ℰ(θ)) Finding conservation laws: apply Noether theorem can only leverage orthogonal invariance! → anti-symmetric, ∀A h(θ, · θ, t) := e∫t 0 τ(⟨ · U, VA⟩ + ⟨ · V, UA⟩) Theorem: for , the conservation laws are φ(θ) = UV⊤ gradient flows r(r + 1) 2 Independent laws: momentum flows r(r − 1) 2 ReLu networks: no conservation! ω := (t, θ(t), · θ(t)), · ω ∈ Span(( 1 · θ −τ(t) · θ ), ( 0 0 ∇φ1 (θ) ), ( 0 0 ∇φ2 (θ) ), …) Lie algebra analysis: phase-space lifting

Slide 33

Slide 33 text

Conclusion 15/15 Deeper networks: no minimal parameterization valid for almost all . θ For some , there exists new conservation laws. → θ(0) https://github.com/sibyllema/Conservation_laws is infinite dimensional, SageMath code to compute → W∞ W∞ (θ) AABE5nictVzbchu5EYU3t41z8yaPeZmN1ilvyuvIjnOp2krV2qIsa621ZZOSvWvaLg45omiPODSHpC9c/UIqL6lU8pQ/yXfkA1KVPOUX0hdggCEx0xjF8ZQkDAanu9EDNLobGMeTdJTPNjf/ce69b3zzW9/+zvvfPf+97//ghz+68MGPD/NsPu0nB/0szaaP4l6epKNxcjAbzdLk0WSa9E7iNHkYv9jC5w8XyTQfZePO7M0keXLSG45HR6N+bwZVh910kM3yZxc2Nq9s0r9ovXBVFzaU/refffDhP1VXDVSm+mquTlSixmoG5VT1VA7XY3VVbaoJ1D1RS6ibQmlEzxN1qs4Ddg6tEmjRg9oX8HsId4917RjukWZO6D5wSeFnCshIXQRMBu2mUEZuET2fE2WsraK9JJoo2xv4G2taJ1A7U8dQK+FMy1Ac9mWmjtTvqA8j6NOEarB3fU1lTlpBySOnVzOgMIE6LA/g+RTKfUIaPUeEyanvqNsePf8XtcRavO/rtnP1b5LyIlyRauveZwWFnloQ/Yje5hyesTwpcB4ChUT3EUuvSNcn1PsxtF9C/V24TqlkdBLDtaTa01rkFlw+5JaI3IHLh9wRkXtw+ZB7InIfLh9yXyMROyWd+/FtuHz4tsj5Plw+5H0R+QAuH/KBiDyEy4c8FJFfweVDfiUib8HlQ94SkXfg8iHviMgOXD5kR0QewOVDHojIbbh8yG2NrJ6pU7gyojMSZuUNKJd5oKVIoeaGKN9Nso4+7M2AOd2vwMqzugV//dhWgE6TCux2wLg7qsDKI28HbKQfK9ui27Sa+LC3RewujAA/dlfEfq6eV2A/D5hpLyqw8lzbg3Z+rGx9v4A7P/YLEXsXSn6svEbdgxo/9l7AijGpwO6L2PvqZQU2xOpPK7Cy3W+DXfFj5XWqA+392BBrOq/Ayvb0EDwYP1ZerR5CrR/7UMQ+Uq8rsI9E7Jdg3f3YLwNW2LcVWLPGnqcVZEj+SAIzto5ar5iVWJoAtZ7APy3WlpR84xjqJcywwAwJcyIidgrETiBir0DsBcuVF3Y0J39X5tIuEO1ARFysTViaie0HRXsspQGIVoForSDqPFJ816YvC/IuTI2EnBUrF5ZC+pQV9htLiR4P9ZbXIO6VEDy2j2nkX6ZoCSMo1FQdteNijWdkRPd1iFcUvZleGh4yblZYBRf1WkTFHlQsot54UG9E1NyDmouohQe1EFF25ru4bsAIsPrHd7GkOx4B7CNXXxF4BTdg1bkNczSC8bMPXuADqrkHf9sUe0tXnWQYzeM6iVmOJyVLPIXSUm1AvY0KWxRfpzTDEpCMW97TMT7eYW5jqeccW+HTYiWPioxJOJ0RyTMs6KC3GNF8akbnDtWcknfHpWb428W8N6Vm+G3S+Cl58Vxqhp9p6WdnkL2jsZ0zYNswmyZa+7bclAbnX5iGKZ+nVRctLr7VEz1mkN7rhvR39ZvZPcN72aIS68eWm9HInf7lpf41oWH1nDt6bkYFvSf2ek0patyTsY57bbmpDBmtomMth71r+mawzUC/GVNuRmMfPK4tirmXTrnp6J0UvbHlZjQOFec9T8mTN+VmNIZ0z/qw5WY0MNvS03G+LTe17KgBjp1tualVH1MWGHNAPOa5xnpFU/KT5praiPyD+myN6/Ovr2OYs3laxAj1lKxvW00nLtayeomMv5CAVZs1lAP9i7njg5VpLNU1Mb5iGWal9X2djl3jUfN7oMUIZj/vAUg58xQkNDkJtN4pULwqRl3lnhncNRGHo+RoBdXVtTPRW7R8OWtUrntGtVJcZntr9dgle53T2JuQT7hHmpX0sFf5hqsoShraK2lIptdEd2/1fC1rf1PETVYQk2Kk9WlHiHfS6uNUn9bbjo4v6l2eGVy852PHL2abj7S1wZgnI1uEstTxdNuZPJJbh+vqZWVz3PwsojeK9mpBVmNEO1K5GIWabDF740u6t7QPaE8OeTCNPrzHSFOZKN41wyw65tMjsqiuvZV4o75Mho7LOVldY4/r0UMHPfSgm8c4W7Bi3IVSB2KGA7jrBEQ55wtdZaTxqfqk2B3N6A3WR/RpyUIaGmxvkpKFrIuyj0tUXgEaRwNH6eE0VukYfHeNkhz1++SxsWvZ8l+knVuzv92jMV49mqszMQPieo24RjRreFeX71Y5sARL75Nr5L/W9xL5NeGINlTi+tThzHoZ045/QhHshDzjlGabNDvKrd381OoTw2lfmb1z3M3OyEJGZP8iWJ8yGpMR/bhnB8wOOluElGxkiN0ZFd6Nz9cZiWPM+nEjxaca7HhLyJbNib+h686unMYiRwy8DpyujG2jkz3yBRPiOtXW3c7t+tUHkfachDtKmKIdK5eI/8f02/yYcbKxNiJQw/gGcm3rfO8jo5gFddSjVb7eBpm2rpQfFTI81VLb9c/K9FFJshZFXCgPrtYD4Nyne+aFo2RKcudrbXgdrcvmIuXJih6xt0cUxbPdH+oVGOW+TKvkBs25Lo2SIYyCWRFFmLZSFnmVbz2vMvUw2vn/hbrVdVlrSDFSNoPLGpLy+wlFa66UKYxqHr8vaDb5tT5daVXPZ0xj8cSZy19D7Yfw28ht7sPoxCWrcJPGAFOwd1YjXBOttQjjdbPEy4xMQ8veW352TJpWbs1Z4mu2bjbGXjSmsk+j5rXOWpjyWWg8d2g8D9Rhh/YarRZNvbFEz8TYoqN3K0P5NeHWaUB5LlKWPTKDGgVI6cZSYVQHIlU5xjeotyKtTZFWD2aruxvgzvkQpH+ur87ur4vVPVK3yLfpkwfG8cuAZumIfC5TWx+pMQXkfF3bV3f2d6kGucdkQZEyn+PEGcO7Tn26TgtJf65XtozsvLUI5tzSK93G2NgulX+1hjyhOZHTvDSI69Qi0fK7ckQrFumK43NElPnvkU/Ffkd9zOy2tu8kKvkTNt7kWWV5caQwJv1Lmbfdteh114lfI4oJ59q7joFW8zeMFBhjMgl+zzKnN4SrHO8ksEcbk/1ct1O8izd2JLpCUi/V7wNsDEe9dqy7Y8v02PTtF9AStW7fuq+FzC8N5ijxO8uOXo9WtRPtoy5X7s9Gq6dXufJ9nR7mK3ytPubUxo0sbJRXxnTVp8FcWKJmXBgTwqVZL5rI30zyJjLz7lQoZdPaUC5nGtjGHFO8JJ0DRYTPu7vk9eY+FvoRr9GLCetS4xqJEmbjMp0fcC0tZqWilQjJrZfWpNRZj6rWC8vDXTWsHWdLmZAVTJWUu+HWbh+6pWhFzsYwhb7ik71VcaJL81O48HekfFGi4RiSQ2yDn3tDbantd3Aq4qUuc2Yzohq0CYOVGLyn+1luUa+jlw51l34Ih3AeI9C1JP2IVtSmsjNlWXKXejj9V2QNpioRpbctm/fB5SL3ZJ1Tk/6MyMLJvRkp801O074YDiE9KXMJ58P7G1IvjpT5tqlZHwx1uQdlDk14mPMMYe/ctm7Oy+VUr691LqE8eB0wOy8GhzuA1TGLbRdioabOG3n3HNA6HNVQN6vF/9oPw8dyas4rlFtO35w9D3jr3C7RmVn0i5vPGcstZDRXcwznmRW9s16Tnx/7f1GjN5U5vXn39NEvtWPA8FoqzofK0jHeHUVW3lAquD/gkyFT/1F/Pyd/lfCyoFElRxNKZr+impppIVMzX176emeehchk6VTJVKZm44k2nYzdUrvqFvxsFR5g01Oi/E0l/0Ws/zvaAdQekfUw2XTOIHSpLqEsiN1NG9C9PUdbJTGe6eUzvh2owT3xParF8753qT2e+e2U+lb9JQnP9S9UpgalyGR1l8/Oqxh6UN6B41yQ+d43ojP1nM3iE2gnAXuMfI6KIyXz9fOSEAOKC1clXRLCjJY6yrGXckxnkpIK2nGpb30a4RO904/7Dng+v1dklyL1S6rr6dUBV2pJqn2PVI8pMxCT/jchQvu1ugx/L+uyX9L9NUlzegdliV47z+pPgp16x4X9mvEi5cFMpm6h22UU1dvdw/pMbKuSC594r8cPa/BDR8o2va0XFHdPVX3ucF5Dc65lcvdzx8rkPVkPGM32ivFRHz8vangtAvp/pxJ9x5F0B2SJKdse0X7elOilWjfbJD2fq6zP296ukdZ8tck07clKOw7MGcn6PYFUj7vq2c/nIKVcTVJBx53rfCJTOi0y8lKS5+ck4DREL6C3cl9DeipRmYuSzAO+RF4EyLIIoHMkSHMkUhiKkmj78OzCxtXV/+tjvXB47crV31y5fv/6xmc39f8D8r76qfqZugRr32/VZzD+99UBcHqu/qj+ov7aOm79ofWn1p+56XvnNOYnqvSv9bf/AjRlQhk= . . .

Slide 34

Slide 34 text

Conclusion 15/15 Deeper networks: no minimal parameterization valid for almost all . θ For some , there exists new conservation laws. → θ(0) https://github.com/sibyllema/Conservation_laws is infinite dimensional, SageMath code to compute → W∞ W∞ (θ) AABE5nictVzbchu5EYU3t41z8yaPeZmN1ilvyuvIjnOp2krV2qIsa621ZZOSvWvaLg45omiPODSHpC9c/UIqL6lU8pQ/yXfkA1KVPOUX0hdggCEx0xjF8ZQkDAanu9EDNLobGMeTdJTPNjf/ce69b3zzW9/+zvvfPf+97//ghz+68MGPD/NsPu0nB/0szaaP4l6epKNxcjAbzdLk0WSa9E7iNHkYv9jC5w8XyTQfZePO7M0keXLSG45HR6N+bwZVh910kM3yZxc2Nq9s0r9ovXBVFzaU/refffDhP1VXDVSm+mquTlSixmoG5VT1VA7XY3VVbaoJ1D1RS6ibQmlEzxN1qs4Ddg6tEmjRg9oX8HsId4917RjukWZO6D5wSeFnCshIXQRMBu2mUEZuET2fE2WsraK9JJoo2xv4G2taJ1A7U8dQK+FMy1Ac9mWmjtTvqA8j6NOEarB3fU1lTlpBySOnVzOgMIE6LA/g+RTKfUIaPUeEyanvqNsePf8XtcRavO/rtnP1b5LyIlyRauveZwWFnloQ/Yje5hyesTwpcB4ChUT3EUuvSNcn1PsxtF9C/V24TqlkdBLDtaTa01rkFlw+5JaI3IHLh9wRkXtw+ZB7InIfLh9yXyMROyWd+/FtuHz4tsj5Plw+5H0R+QAuH/KBiDyEy4c8FJFfweVDfiUib8HlQ94SkXfg8iHviMgOXD5kR0QewOVDHojIbbh8yG2NrJ6pU7gyojMSZuUNKJd5oKVIoeaGKN9Nso4+7M2AOd2vwMqzugV//dhWgE6TCux2wLg7qsDKI28HbKQfK9ui27Sa+LC3RewujAA/dlfEfq6eV2A/D5hpLyqw8lzbg3Z+rGx9v4A7P/YLEXsXSn6svEbdgxo/9l7AijGpwO6L2PvqZQU2xOpPK7Cy3W+DXfFj5XWqA+392BBrOq/Ayvb0EDwYP1ZerR5CrR/7UMQ+Uq8rsI9E7Jdg3f3YLwNW2LcVWLPGnqcVZEj+SAIzto5ar5iVWJoAtZ7APy3WlpR84xjqJcywwAwJcyIidgrETiBir0DsBcuVF3Y0J39X5tIuEO1ARFysTViaie0HRXsspQGIVoForSDqPFJ816YvC/IuTI2EnBUrF5ZC+pQV9htLiR4P9ZbXIO6VEDy2j2nkX6ZoCSMo1FQdteNijWdkRPd1iFcUvZleGh4yblZYBRf1WkTFHlQsot54UG9E1NyDmouohQe1EFF25ru4bsAIsPrHd7GkOx4B7CNXXxF4BTdg1bkNczSC8bMPXuADqrkHf9sUe0tXnWQYzeM6iVmOJyVLPIXSUm1AvY0KWxRfpzTDEpCMW97TMT7eYW5jqeccW+HTYiWPioxJOJ0RyTMs6KC3GNF8akbnDtWcknfHpWb428W8N6Vm+G3S+Cl58Vxqhp9p6WdnkL2jsZ0zYNswmyZa+7bclAbnX5iGKZ+nVRctLr7VEz1mkN7rhvR39ZvZPcN72aIS68eWm9HInf7lpf41oWH1nDt6bkYFvSf2ek0patyTsY57bbmpDBmtomMth71r+mawzUC/GVNuRmMfPK4tirmXTrnp6J0UvbHlZjQOFec9T8mTN+VmNIZ0z/qw5WY0MNvS03G+LTe17KgBjp1tualVH1MWGHNAPOa5xnpFU/KT5praiPyD+myN6/Ovr2OYs3laxAj1lKxvW00nLtayeomMv5CAVZs1lAP9i7njg5VpLNU1Mb5iGWal9X2djl3jUfN7oMUIZj/vAUg58xQkNDkJtN4pULwqRl3lnhncNRGHo+RoBdXVtTPRW7R8OWtUrntGtVJcZntr9dgle53T2JuQT7hHmpX0sFf5hqsoShraK2lIptdEd2/1fC1rf1PETVYQk2Kk9WlHiHfS6uNUn9bbjo4v6l2eGVy852PHL2abj7S1wZgnI1uEstTxdNuZPJJbh+vqZWVz3PwsojeK9mpBVmNEO1K5GIWabDF740u6t7QPaE8OeTCNPrzHSFOZKN41wyw65tMjsqiuvZV4o75Mho7LOVldY4/r0UMHPfSgm8c4W7Bi3IVSB2KGA7jrBEQ55wtdZaTxqfqk2B3N6A3WR/RpyUIaGmxvkpKFrIuyj0tUXgEaRwNH6eE0VukYfHeNkhz1++SxsWvZ8l+knVuzv92jMV49mqszMQPieo24RjRreFeX71Y5sARL75Nr5L/W9xL5NeGINlTi+tThzHoZ045/QhHshDzjlGabNDvKrd381OoTw2lfmb1z3M3OyEJGZP8iWJ8yGpMR/bhnB8wOOluElGxkiN0ZFd6Nz9cZiWPM+nEjxaca7HhLyJbNib+h686unMYiRwy8DpyujG2jkz3yBRPiOtXW3c7t+tUHkfachDtKmKIdK5eI/8f02/yYcbKxNiJQw/gGcm3rfO8jo5gFddSjVb7eBpm2rpQfFTI81VLb9c/K9FFJshZFXCgPrtYD4Nyne+aFo2RKcudrbXgdrcvmIuXJih6xt0cUxbPdH+oVGOW+TKvkBs25Lo2SIYyCWRFFmLZSFnmVbz2vMvUw2vn/hbrVdVlrSDFSNoPLGpLy+wlFa66UKYxqHr8vaDb5tT5daVXPZ0xj8cSZy19D7Yfw28ht7sPoxCWrcJPGAFOwd1YjXBOttQjjdbPEy4xMQ8veW352TJpWbs1Z4mu2bjbGXjSmsk+j5rXOWpjyWWg8d2g8D9Rhh/YarRZNvbFEz8TYoqN3K0P5NeHWaUB5LlKWPTKDGgVI6cZSYVQHIlU5xjeotyKtTZFWD2aruxvgzvkQpH+ur87ur4vVPVK3yLfpkwfG8cuAZumIfC5TWx+pMQXkfF3bV3f2d6kGucdkQZEyn+PEGcO7Tn26TgtJf65XtozsvLUI5tzSK93G2NgulX+1hjyhOZHTvDSI69Qi0fK7ckQrFumK43NElPnvkU/Ffkd9zOy2tu8kKvkTNt7kWWV5caQwJv1Lmbfdteh114lfI4oJ59q7joFW8zeMFBhjMgl+zzKnN4SrHO8ksEcbk/1ct1O8izd2JLpCUi/V7wNsDEe9dqy7Y8v02PTtF9AStW7fuq+FzC8N5ijxO8uOXo9WtRPtoy5X7s9Gq6dXufJ9nR7mK3ytPubUxo0sbJRXxnTVp8FcWKJmXBgTwqVZL5rI30zyJjLz7lQoZdPaUC5nGtjGHFO8JJ0DRYTPu7vk9eY+FvoRr9GLCetS4xqJEmbjMp0fcC0tZqWilQjJrZfWpNRZj6rWC8vDXTWsHWdLmZAVTJWUu+HWbh+6pWhFzsYwhb7ik71VcaJL81O48HekfFGi4RiSQ2yDn3tDbantd3Aq4qUuc2Yzohq0CYOVGLyn+1luUa+jlw51l34Ih3AeI9C1JP2IVtSmsjNlWXKXejj9V2QNpioRpbctm/fB5SL3ZJ1Tk/6MyMLJvRkp801O074YDiE9KXMJ58P7G1IvjpT5tqlZHwx1uQdlDk14mPMMYe/ctm7Oy+VUr691LqE8eB0wOy8GhzuA1TGLbRdioabOG3n3HNA6HNVQN6vF/9oPw8dyas4rlFtO35w9D3jr3C7RmVn0i5vPGcstZDRXcwznmRW9s16Tnx/7f1GjN5U5vXn39NEvtWPA8FoqzofK0jHeHUVW3lAquD/gkyFT/1F/Pyd/lfCyoFElRxNKZr+impppIVMzX176emeehchk6VTJVKZm44k2nYzdUrvqFvxsFR5g01Oi/E0l/0Ws/zvaAdQekfUw2XTOIHSpLqEsiN1NG9C9PUdbJTGe6eUzvh2owT3xParF8753qT2e+e2U+lb9JQnP9S9UpgalyGR1l8/Oqxh6UN6B41yQ+d43ojP1nM3iE2gnAXuMfI6KIyXz9fOSEAOKC1clXRLCjJY6yrGXckxnkpIK2nGpb30a4RO904/7Dng+v1dklyL1S6rr6dUBV2pJqn2PVI8pMxCT/jchQvu1ugx/L+uyX9L9NUlzegdliV47z+pPgp16x4X9mvEi5cFMpm6h22UU1dvdw/pMbKuSC594r8cPa/BDR8o2va0XFHdPVX3ucF5Dc65lcvdzx8rkPVkPGM32ivFRHz8vangtAvp/pxJ9x5F0B2SJKdse0X7elOilWjfbJD2fq6zP296ukdZ8tck07clKOw7MGcn6PYFUj7vq2c/nIKVcTVJBx53rfCJTOi0y8lKS5+ck4DREL6C3cl9DeipRmYuSzAO+RF4EyLIIoHMkSHMkUhiKkmj78OzCxtXV/+tjvXB47crV31y5fv/6xmc39f8D8r76qfqZugRr32/VZzD+99UBcHqu/qj+ov7aOm79ofWn1p+56XvnNOYnqvSv9bf/AjRlQhk= . . . Extensions: Max-pooling Convolution Skip connexions Variable metric, mirror descent Discrete gradient descent, SGD …