Slide 16
Slide 16 text
• ⽥中正⼈. (2013). 南海・東南海地震の激甚被害が想定される沿岸地域の⾃主的な⾼所移転の実態とその背景-和
歌⼭県串本町の事例を通して. 地域安全学会論⽂集, 21, 251-258.
• 市街地内の⽔没危険地域で⼈⼝増 20年で60万⼈ ⾏政の居住誘導も 広域避難の体制必要.⽇本経済新聞. 2023-
08-24, ⽇経電⼦版, https://www.nikkei.com/article/DGXZQOUE221DL0S3A520C2000000/, 参照2023-11-19
• 朝倉康夫. 利⽤者均衡を制約とする交通ネットワーク の最適計画モデル. ⼟⽊計画学研究・論⽂集, 6:1–19,
1988.
• Cai, Z., Mo, D., Tang, W., Chen, Y., & Chen, X. (. (2023). A two-period game-theoretical model for
heterogeneous ride-sourcing platforms with asymmetric competition and mixed fleets. Transportation Research
Part E: Logistics and Transportation Review, 178, 103279. https://doi.org/10.1016/j.tre.2023.103279
• Li, D., Islam, D. M. Z., Robinson, M., Song, D., Dong, J., & Reimann, M. (2023). Network revenue management
game in the railway industry: Stackelberg equilibrium, global optimality, and mechanism design. European
Journal of Operational Research, 312(1), 240-254. https://doi.org/10.1016/j.ejor.2023.06.044
• Zheng, Y., Lin, Y., Zhao, L., Wu, T., Jin, D., & Li, Y. (2023). Spatial planning of urban communities via deep
reinforcement learning. Nature Computational Science, 1-15.
• Qian, K., Mao, L., Liang, X., Ding, Y., Gao, J., Wei, X., ... & Li, J. (2023). AI Agent as Urban Planner: Steering
Stakeholder Dynamics in Urban Planning via Consensus-based Multi-Agent Reinforcement Learning. arXiv
preprint arXiv:2310.16772.
• Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., & Socher, R. (2022). The AI Economist: Taxation policy design
via two-level deep multiagent reinforcement learning. Science Advances. https://doi.org/abk2607
• Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science. https://doi.org/aar6404
16
参考⽂献