Slide 1

Slide 1 text

ֶशɾਪ࿦ύΠϓϥΠϯΛߏங͢Δ্Ͱ େ੾ʹ͍ͯ͠Δ͜ͱ $POOFIJUP*OD໺ᖒ఩র  ෼ੳίϯϖ-5ձ

Slide 2

Slide 2 text

͜Μʹͪ͸ʂ 

Slide 3

Slide 3 text

ࠓ೔ൃද͢Δ͜ͱ͸Լهͱएׯॏෳ͠·͢  IUUQTTQFBLFSEFDLDPNUBLBQZEFUBGFOYJLPOQFOJPJUFUF[IFOHMJBOH HVBOMJOJQJCJTJUFJSVRVBOSFOMFJOJDIVBOFUBJYJBOHJ

Slide 4

Slide 4 text

 ΞδΣϯμ  ࣗݾ঺հ  ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ  େ੾ʹ͍ͯ͠Δ͜ͱ ‣ ֶशͷ࠶ݱੑ ‣ 1%$"ͷߴ଎Խ ‣ ҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έ  ࣮૷ৄࡉ

Slide 5

Slide 5 text

ࣗݾ঺հ 

Slide 6

Slide 6 text

 ࣗݾ঺հ ໊લɿ໺ᖒ఩রʢ/P[BXB5BLBOPCVʣ ॴଐɿίωώτגࣜձࣾ ɹɹɿ͔ͨͺ͍!UBLBQZ w ʙίωώτʹ.-ΤϯδχΞͱͯ͠+0*/ w ػցֶशʢ/-1ɺਪનγεςϜʣΛϝΠϯʹ΍ΓͭͭΠϯϑϥʢ"84ʣ΋ษڧத w ,BHHMFͨ͠ΓɺϒϩάʢIUUQTXXXUBLBQZXPSLʣॻ͍ͨΓɺ໺ٿͨ͠Γɺ ϥʔϝϯ৯΂ͨΓ͍ͯ͠·͢ w ΦεεϝͷυϥϜࣜચ୕ػ͋ͬͨΒڭ͍͑ͯͩ͘͞

Slide 7

Slide 7 text

 ࣗݾ঺հ ˞ʮӾཡ਺ʯʮར༻ऀ਺ʯ͸ϝσΟΞͱΞϓϦͷ߹ܭ஋ʢ೥݄݄ͷฏۉ஋ʣ ˞ʮϚϚ޲͚/PΞϓϦʯ͸೥݄Πϯςʔδௐ΂ɹௐࠪର৅ɿ೛৷தʙ̎ࡀ̌ϲ݄ͷࢠڙΛ࣋ͭঁੑ O  Λநग़ ˞*OTUBHSBNͷϑΥϩϫʔ਺ɺ'BDFCPPLͷ͍͍Ͷ਺ɺ-*/&ͷͱ΋ͩͪ਺ͷ߹ܭ஋ ೥݄࣌఺  ϚϚϦ ΞϓϦɾ8FC 4/4 *OTUBHSBNɾ-*/&ɾ'BDFCPPL هࣄ ϚϚಉ࢜Ͱ೰ΈΛ૬ஊ͠߹͏2"ίϛϡχςΟΛத৺ʹ ϢʔβʔΛ֦େ͍ͯ͠·͢ ʮϚϚϦʯͰϢʔβʔಉ͕࢜ ͲΜͲΜܨ͕͍ͬͯ·͢ ϚϚͷੜ׆ʹ໾ཱͭهࣄΛ ෯޿͍δϟϯϧͰ഑৴͍ͯ͠·͢ ϚϚ޲͚/P̍ΞϓϦʹબग़  ਓͷϚϚ͕બͿʮݱࡏ࢖͍ͬͯΔΞϓϦʯʹ ͯɺ߲໨ ଞͷϚϚʹΦεεϝ͍ͨ͠ɺೝ஌౓ɺ ར༻཰ɺརศੑɺ޷ײ౓ Ͱ̍ҐΛ֫ಘ͠·ͨ͠ هࣄ਺ 6,000 هࣄҎ্ ྦྷܭϑΝϯ਺ ໿ 85 ສਓ ˞ ݄ؒӾཡ਺ ໿ 1.5ԯճ ˞ ݄ؒར༻ऀ਺ ໿ 650ສਓ ˞ ˞ l೰ΈzͱzڞײzΛ࣠ʹϚϚʹدΓఴ͍ ΞϓϦɾ8FCɾ4/4ͱଟ֯తʹαʔϏεΛల։͍ͯ͠·͢

Slide 8

Slide 8 text

 ࣗݾ঺հ 0 450,000 900,000 1,350,000 1,800,000 2014/4 2014/5 2014/6 2014/7 2014/8 2014/9 2014/10 2014/11 2014/12 2015/1 2015/2 2015/3 2015/4 2015/5 2015/6 2015/7 2015/8 2015/9 2015/10 2015/11 2015/12 2016/1 2016/2 2016/3 2016/4 2016/5 2016/6 2016/7 2016/8 2016/9 2016/10 2016/11 2016/12 2017/1 2017/2 2017/3 2017/4 2017/5 2017/6 2017/7 2017/8 2017/9 2017/10 2017/11 2017/12 2018/1 2018/2 2018/3 2018/4 2018/5 2018/6 2018/7 2018/8 ݄ؒ౤ߘ਺ ໿ 150ສ݅ िʹ೔Ҏ্ىಈ͢Δ ΞΫςΟϒϢʔβʔ ໿ 50 ਓʹਓ 57$. ์ө ΞϓϦ૯%-਺ສ ਓʹਓ ਓʹਓ ਓʹਓ ਓʹਓ ˞ ˞ʮϚϚϦʯ಺ͷग़࢈༧ఆ೔Λઃఆͨ͠Ϣʔβʔ਺ͱɺްੜ࿑ಇলൃදʮਓޱಈଶ౷ܭʯͷग़ੜ਺͔Βࢉग़ ˞िʹճҎ্ىಈ͢ΔϢʔβʔ ˞ ೥ʹग़࢈ͨ͠ϚϚͷʮਓʹਓʯ͕ϚϚϦΛར༻த ೔ຊ࠷େڃن໛ΛތΔϒϥϯυ΁ͱ੒௕͍ͯ͠·͢ ˞

Slide 9

Slide 9 text

ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ 

Slide 10

Slide 10 text

 ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ ΊͬͪΌྑ͍είΞͷOPUFCPPL͕׬੒ ˣ ͜ͷOPUFCPPLΛ%VQMJDBUFͯ͠ɺ΋ͬͱྑ͍Ϟσϧ࡞ͬͪΌ͏ͧʂ

Slide 11

Slide 11 text

 ҰํɺOPUFCPPLͷத਎͸ʜ

Slide 12

Slide 12 text

 ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ <> import numpy as np import pandas as pd OPUFCPPLͷத਎ ɾ ɾ ɾ <> hogehoge <> hogehoge <> hogehoge ɾ ɾ ɾ

Slide 13

Slide 13 text

 ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ <> import numpy as np import pandas as pd OPUFCPPLͷத਎ ɾ ɾ ɾ <> hogehoge <> hogehoge <> hogehoge ɾ ɾ ɾ ηϧͷ࣮ߦॱ͕ͪ͝Όͪ͝Ό ˣ ࠶ݱੑ͕ͳ͍

Slide 14

Slide 14 text

 ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ <> import numpy as np import pandas as pd OPUFCPPLͷத਎ ɾ ɾ ɾ <> submission.to_csv('submission.csv', index=False)

Slide 15

Slide 15 text

 ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ <> import numpy as np import pandas as pd OPUFCPPLͷத਎ ɾ ɾ ɾ <> submission.to_csv('submission.csv', index=False) ηϧ͕ଟ͘ɺಉ͡ܭࢉΛෳ਺࣮ߦ͠ͳ͚Ε͹ͳΒͳ͍ ˣ 1%$"͕஗͘ͳΓ͕ͪ

Slide 16

Slide 16 text

 ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC ʜʜʜʜʜ

Slide 17

Slide 17 text

 ύΠϓϥΠϯ͕ͳ͔ͬͨ࣌ͷπϥϛ dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@$PQZJQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC dOPUFCPPL-JHIU#(.@TDPSF@JQZOC ʜʜʜʜʜ OPUFCPPL͕ࡍݶͳ͘૿৩͠ ؅ཧ͕ΊͪΌͪ͘Ό൥ࡶʹ

Slide 18

Slide 18 text

 ͜ΕΒͷπϥϛΛղফ͢΂͘ ୤ɾOPUFCPPLʹνϟϨϯδ ˣ ͦΜͳதͰେ੾ʹ͍ͯ͠Δ͜ͱΛ͓఻͑͠·͢ ˞&%"ͳͲ͸OPUFCPPLΛ࢖༻

Slide 19

Slide 19 text

 ౔୆͸͜ͷຊͰ͢

Slide 20

Slide 20 text

େ੾ʹ͍ͯ͠Δ͜ͱ 

Slide 21

Slide 21 text

 ͦͷ ʙֶशͷ࠶ݱੑʙ

Slide 22

Slide 22 text

 ͦͷ ʙֶशͷ࠶ݱੑʙ ϙΠϯτ͸̏ͭ

Slide 23

Slide 23 text

 େ੾ʹ͍ͯ͠Δ͜ͱ w ͲΜͳಛ௃ྔΛ࢖ͬͯ ʙֶशͷ࠶ݱੑʙ

Slide 24

Slide 24 text

 େ੾ʹ͍ͯ͠Δ͜ͱ w ͲΜͳಛ௃ྔΛ࢖ͬͯ w ͲΜͳύϥϝʔλʔΛ࢖ͬͯ ʙֶशͷ࠶ݱੑʙ

Slide 25

Slide 25 text

 େ੾ʹ͍ͯ͠Δ͜ͱ w ͲΜͳಛ௃ྔΛ࢖ͬͯ w ͲΜͳύϥϝʔλʔΛ࢖ͬͯ w ͲΜͳ$7Λ࢖ͬͯ ֶश͔ͨ͠Λอଘ͓ͯ͘͠ɻ ʙֶशͷ࠶ݱੑʙ

Slide 26

Slide 26 text

 େ੾ʹ͍ͯ͠Δ͜ͱ w ͲΜͳಛ௃ྔΛ࢖ͬͯ w ͲΜͳύϥϝʔλʔΛ࢖ͬͯ w ͲΜͳ$7Λ࢖ͬͯ ֶश͔ͨ͠Λอଘ͓ͯ͘͠ɻ ʙֶशͷ࠶ݱੑʙ %0//"อଘଇ

Slide 27

Slide 27 text

 ͦͷ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ

Slide 28

Slide 28 text

 େ੾ʹ͍ͯ͠Δ͜ͱ w ͭͷQZUIPOεΫϦϓτͰ%0//"ΛঠѲ  ࢖༻͢Δಛ௃ྔ  ࢖༻͢Δύϥϝʔλ  ࢖༻͢Δ$7 ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ

Slide 29

Slide 29 text

 େ੾ʹ͍ͯ͠Δ͜ͱ w ͭͷQZUIPOεΫϦϓτͰ%0//"ΛঠѲ  ࢖༻͢Δಛ௃ྔ  ࢖༻͢Δύϥϝʔλ  ࢖༻͢Δ$7 w GFBUVSFJNQPSUBODFͷݟ͑ΔԽ  ࣍ͷ࣮ݧ΁ͷצॴΛ͔ͭΊΔΑ͏ʹ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ

Slide 30

Slide 30 text

 ͦͷ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ

Slide 31

Slide 31 text

 େ੾ʹ͍ͯ͠Δ͜ͱ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ w %0///" Ϟσϧ΍ϩάϑΝΠϧΛɺ࣮ߦ͝ͱʹʮ೔࣌ʯ TV⒏YΛ͚ͭͨσΟϨΫτϦɾϑΝΠϧͰࣗಈ؅ཧ  ࢖༻͢Δಛ௃ྔ ύϥϝʔλ $7  ֶशͨ͠Ϟσϧ  ֶशϩάϑΝΠϧ  GFBUVSFJNQPSUBODF

Slide 32

Slide 32 text

 େ੾ʹ͍ͯ͠Δ͜ͱ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ w %0///" Ϟσϧ΍ϩάϑΝΠϧΛɺ࣮ߦ͝ͱʹʮ೔࣌ʯ TV⒏YΛ͚ͭͨσΟϨΫτϦɾϑΝΠϧͰࣗಈ؅ཧ  ࢖༻͢Δಛ௃ྔ ύϥϝʔλ $7  ֶशͨ͠Ϟσϧ  ֶशϩάϑΝΠϧ  GFBUVSFJNQPSUBODF w 1VCMJDείΞΛσΟϨΫτϦͷ1SFpYʹ෇͚Δ͜ͱͰɺ 1VCMJDͱMPDBMͷείΞͷରԠΛ෼͔Γ΍͘͢ʢৄࡉ͸ޙ΄Ͳʣ

Slide 33

Slide 33 text

 େ੾ʹ͍ͯ͠Δ͜ͱ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ w %0///" Ϟσϧ΍ϩάϑΝΠϧΛɺ࣮ߦ͝ͱʹʮ೔࣌ʯ TV⒏YΛ͚ͭͨσΟϨΫτϦɾϑΝΠϧͰࣗಈ؅ཧ  ࢖༻͢Δಛ௃ྔ ύϥϝʔλ $7  ֶशͨ͠Ϟσϧ  ֶशϩάϑΝΠϧ  GFBUVSFJNQPSUBODF w 1VCMJDείΞΛσΟϨΫτϦͷ1SFpYʹ෇͚Δ͜ͱͰɺ 1VCMJDͱMPDBMͷείΞͷରԠΛ෼͔Γ΍͘͢ʢৄࡉ͸ޙ΄Ͳʣ ৄࡉΛݟ͍͖ͯ·͢

Slide 34

Slide 34 text

࣮૷ৄࡉ 

Slide 35

Slide 35 text

 ྫʣIPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } runner = Runner(run_name, ModelLGB, features, dataset.get('target'), params_lgb, cv, FEATURE_DIR_NAME, MODEL_DIR_NAME) runner.run_train_cv() # ֶश runner.run_predict_cv() # ਪ࿦ Submission.create_submission(run_name) # submit࡞੒

Slide 36

Slide 36 text

 ྫʣIPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } runner = Runner(run_name, ModelLGB, features, dataset.get('target'), params_lgb, cv, FEATURE_DIR_NAME, MODEL_DIR_NAME) runner.run_train_cv() # ֶश runner.run_predict_cv() # ਪ࿦ Submission.create_submission(run_name) # submit࡞੒ جຊతʹ1%$"Λճ͢ͱ͖ʹ͍͡Δͷ͸ ͜ͷIPHFQZͷΈʹ͢Δ

Slide 37

Slide 37 text

 ྫʣIPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } runner = Runner(run_name, ModelLGB, features, dataset.get('target'), params_lgb, cv, FEATURE_DIR_NAME, MODEL_DIR_NAME) runner.run_train_cv() # ֶश runner.run_predict_cv() # ਪ࿦ Submission.create_submission(run_name) # submit࡞੒ ֶशʹ࢖༻͢Δಛ௃ྔ

Slide 38

Slide 38 text

 ྫʣIPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } runner = Runner(run_name, ModelLGB, features, dataset.get('target'), params_lgb, cv, FEATURE_DIR_NAME, MODEL_DIR_NAME) runner.run_train_cv() # ֶश runner.run_predict_cv() # ਪ࿦ Submission.create_submission(run_name) # submit࡞੒ ϋΠύʔύϥϝʔλ

Slide 39

Slide 39 text

 ྫʣIPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } runner = Runner(run_name, ModelLGB, features, dataset.get('target'), params_lgb, cv, FEATURE_DIR_NAME, MODEL_DIR_NAME) runner.run_train_cv() # ֶश runner.run_predict_cv() # ਪ࿦ Submission.create_submission(run_name) # submit࡞੒ $7ͷઃఆ

Slide 40

Slide 40 text

 ྫʣIPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } runner = Runner(run_name, ModelLGB, features, dataset.get('target'), params_lgb, cv, FEATURE_DIR_NAME, MODEL_DIR_NAME) runner.run_train_cv() # ֶश runner.run_predict_cv() # ਪ࿦ Submission.create_submission(run_name) # submit࡞੒ ֶशɾਪ࿦ɾTVC࡞੒

Slide 41

Slide 41 text

 ྫʣIPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } runner = Runner(run_name, ModelLGB, features, dataset.get('target'), params_lgb, cv, FEATURE_DIR_NAME, MODEL_DIR_NAME) runner.run_train_cv() # ֶश runner.run_predict_cv() # ਪ࿦ Submission.create_submission(run_name) # submit࡞੒ ֶशɾਪ࿦ɾTVC࡞੒ w ࠶ݱੑΛ୲อ͢Δ޻෉ w ߴ଎ͳ1$%"Λճͨ͢Ίͷ޻෉ w ҙࣝ͠ͳͯ͘΋ॾʑ͕؅ཧͰ͖Δ޻෉ ʹ͍͓ͭͯ࿩͠͠·͢

Slide 42

Slide 42 text

 ʙֶशͷ࠶ݱੑΛ୲อ͢ΔͨΊͷ޻෉ʙ

Slide 43

Slide 43 text

 ࣮૷ৄࡉ IPHFQZ ʙֶशͷ࠶ݱੑʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, }

Slide 44

Slide 44 text

 ࣮૷ৄࡉ IPHFQZ ʙֶशͷ࠶ݱੑʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } QZUIPOIPHFQZ

Slide 45

Slide 45 text

 ࣮૷ৄࡉ IPHFQZ ʙֶशͷ࠶ݱੑʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } { "use_features": [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ], "model_params": { "boosting_type": "gbdt", "objective": "fair", "metric": "fair", "num_boost_round": 20000, "early_stopping_rounds": 1000, "verbose": 1000, "random_state": 999 }, "cv": { "method": "KFold", "n_splits": 5, "random_state": 42, "shuffle": true }, "dataset": { "run_name": "lgb_1128_2003", "feature_directory": "../data/features/remove_outlier/", "target": "salary" } } IPHF@QBSBNKTPO QZUIPOIPHFQZ

Slide 46

Slide 46 text

 ࣮૷ৄࡉ IPHFQZ ʙֶशͷ࠶ݱੑʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } { "use_features": [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ], "model_params": { "boosting_type": "gbdt", "objective": "fair", "metric": "fair", "num_boost_round": 20000, "early_stopping_rounds": 1000, "verbose": 1000, "random_state": 999 }, "cv": { "method": "KFold", "n_splits": 5, "random_state": 42, "shuffle": true }, "dataset": { "run_name": "lgb_1128_2003", "feature_directory": "../data/features/remove_outlier/", "target": "salary" } } IPHF@QBSBNKTPO QZUIPOIPHFQZ IPHFQZΛ࣮ߦ͢Δ͜ͱʹΑΓ ࣗಈతʹKTPOϑΝΠϧ͕ੜ੒͞Ε ࢖༻ͨ͠ಛ௃ྔɾύϥϝʔλʔͳͲ͕શͯอଘ͞ΕΔ

Slide 47

Slide 47 text

 ࣮૷ৄࡉ IPHFQZ ʙֶशͷ࠶ݱੑʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } { "use_features": [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ], "model_params": { "boosting_type": "gbdt", "objective": "fair", "metric": "fair", "num_boost_round": 20000, "early_stopping_rounds": 1000, "verbose": 1000, "random_state": 999 }, "cv": { "method": "KFold", "n_splits": 5, "random_state": 42, "shuffle": true }, "dataset": { "run_name": "lgb_1128_2003", "feature_directory": "../data/features/remove_outlier/", "target": "salary" } } IPHF@QBSBNKTPO QZUIPOIPHFQZ ͜Εͧ࠶ݱੑ

Slide 48

Slide 48 text

 ʙߴ଎ͳ1%$"Λճͨ͢Ίͷ޻෉ʙ

Slide 49

Slide 49 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ

Slide 50

Slide 50 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ ಛ௃ྔΛݮΒֶͯ͠श͍ͤͨ͞

Slide 51

Slide 51 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ features = [ "age", "pclass", # "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } IPHFQZ ର৅ͷಛ௃ྔΛίϝϯτΞ΢τ

Slide 52

Slide 52 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ features = [ "age", "pclass", # "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } IPHFQZ QZUIPOIPHFQZ ର৅ͷಛ௃ྔΛίϝϯτΞ΢τ

Slide 53

Slide 53 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ features = [ "age", "pclass", # "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } IPHFQZ QZUIPOIPHFQZ ର৅ͷಛ௃ྔΛίϝϯτΞ΢τ ؆୯

Slide 54

Slide 54 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ

Slide 55

Slide 55 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ $7มֶ͑ͯश͍ͤͨ͞

Slide 56

Slide 56 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'GroupKFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, 'cv_target':'user' } IPHFQZ DWͷهࡌΛมߋ

Slide 57

Slide 57 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'GroupKFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, 'cv_target':'user' } IPHFQZ DWͷهࡌΛมߋ QZUIPOIPHFQZ

Slide 58

Slide 58 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'GroupKFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, 'cv_target':'user' } IPHFQZ DWͷهࡌΛมߋ QZUIPOIPHFQZ ؆୯

Slide 59

Slide 59 text

 ࣮૷ৄࡉ IPHFQZ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'KFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, } ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ features = [ "age", "pclass", "family_size", "fare", "sibsp", "parch", "cabin" ] params_lgb = { 'boosting_type': 'gbdt', 'objective': 'fair', 'metric': 'fair', 'num_boost_round': 20000, 'early_stopping_rounds': 1000, 'verbose': 1000, 'random_state': 999 } cv = { 'method': 'GroupKFold', 'n_splits': 5, 'random_state': 42, 'shuffle': True, 'cv_target':'user' } IPHFQZ DWͷهࡌΛมߋ QZUIPOIPHFQZ GFBUVSFJNQPSUBODFʹ͍ͭͯ

Slide 60

Slide 60 text

 ࣮૷ৄࡉ ֶशͱಉ࣌ʹGFBUVSFJNQPSUBODF͕ը૾ϑΝΠϧͱͯ͠ग़ྗ͞ΕΔ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ

Slide 61

Slide 61 text

 ࣮૷ৄࡉ ֶशͱಉ࣌ʹGFBUVSFJNQPSUBODF͕ը૾ϑΝΠϧͱͯ͠ग़ྗ͞ΕΔ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ ͜ͷંΕઢάϥϑ͕ద੾Ͱ͸ͳ͍ͷ͸ঝ஌͓ͯ͠Γ·͢ʜ ࠓ͸ΦϨΦϨӡ༻ͳͷͰ͜ͷ··์ஔ͓ͯ͠Γ·ͯ͠ Ͳ͏͔ࢗͣ͞ʹ͓ئ͍͠·͢

Slide 62

Slide 62 text

 ࣮૷ৄࡉ ֶशͱಉ࣌ʹGFBUVSFJNQPSUBODF͕ը૾ϑΝΠϧͱͯ͠ग़ྗ͞ΕΔ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ ಛ௃ྔ

Slide 63

Slide 63 text

 ࣮૷ৄࡉ ֶशͱಉ࣌ʹGFBUVSFJNQPSUBODF͕ը૾ϑΝΠϧͱͯ͠ग़ྗ͞ΕΔ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ GPMEຖͷฏۉͱඪ४ภࠩ

Slide 64

Slide 64 text

 ࣮૷ৄࡉ ֶशͱಉ࣌ʹGFBUVSFJNQPSUBODF͕ը૾ϑΝΠϧͱͯ͠ग़ྗ͞ΕΔ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ มಈ܎਺ʢඪ४ภࠩฏۉʣ

Slide 65

Slide 65 text

 ࣮૷ৄࡉ ֶशͱಉ࣌ʹGFBUVSFJNQPSUBODF͕ը૾ϑΝΠϧͱͯ͠ग़ྗ͞ΕΔ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ ͜ͷ͋ͨΓͷಛ௃ྔ͸࡟ͬͯྑͦ͞͏ ͱ͍͏צॴ͕௫ΊΔ

Slide 66

Slide 66 text

 ࣮૷ৄࡉ ֶशͱಉ࣌ʹGFBUVSFJNQPSUBODF͕ը૾ϑΝΠϧͱͯ͠ग़ྗ͞ΕΔ ʙߴ଎ͳ1%$"Λ໨ࢦͯ͠ʙ ͜ͷ͋ͨΓͷಛ௃ྔ͸࡟ͬͯྑͦ͞͏ ͱ͍͏צॴ͕௫ΊΔ 1%$"଎͘ճͤͦ͏ײ

Slide 67

Slide 67 text

 ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έͷ޻෉ʙ

Slide 68

Slide 68 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ

Slide 69

Slide 69 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ QMHC@@ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ

Slide 70

Slide 70 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ QMHC@@ 1VCMJDͷείΞ ʢʣ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ

Slide 71

Slide 71 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ QMHC@@ ֶशΛҰҙʹಛఆ͢Δ໊લ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ

Slide 72

Slide 72 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ QMHC@@ ΞϧΰϦζϜͷࣝผࢠ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ

Slide 73

Slide 73 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ QMHC@@ IPHFQZΛ࣮ߦͨ͠೔࣌ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ

Slide 74

Slide 74 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ

Slide 75

Slide 75 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ w ಛ௃ྔ w ύϥϝʔλ w GFBUVSFJNQPSUBODF w ֶशϩά w Ϟσϧ w ਪ࿦ϑΝΠϧ ͕อଘ͞ΕΔ

Slide 76

Slide 76 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ w ಛ௃ྔ w ύϥϝʔλ w GFBUVSFJNQPSUBODF w ֶशϩά w Ϟσϧ w ਪ࿦ϑΝΠϧ ͕อଘ͞ΕΔ ҙࣝͯ͠ͳ͍͚Ͳউखʹ؅ཧͰ͖ͯΔ

Slide 77

Slide 77 text

 ࣮૷ৄࡉ IPHFQZΛ࣮ߦͨ͋͠ͱͷϑΥϧμɾϑΝΠϧ ʙҙࣝ͠ͳͯ͘΋؅ཧͰ͖Δ࢓૊Έʙ w ಛ௃ྔ w ύϥϝʔλ w GFBUVSFJNQPSUBODF w ֶशϩά w Ϟσϧ w ਪ࿦ϑΝΠϧ ͕อଘ͞ΕΔ

Slide 78

Slide 78 text

·ͱΊ 

Slide 79

Slide 79 text

 ·ͱΊ w ֶशɾਪ࿦ύΠϓϥΠϯ͍͍ͧʂ  ύΠϓϥΠϯΛߏங͢Δ͜ͱͰԼهͷΑ͏ͳϝϦοτ͕͋Γʢࠓͷॴʣݸਓత ʹ͸ΊͬͪΌྑ͍ɻ ‣ ࠶ݱੑ ‣ ߴ଎ͳ1%$" ‣ ॾʑͷ؅ཧ w ্هͷΑ͏ͳ͜ͱ͕୲อ͞ΕΔͷͰ৺ཧత҆શੑ΋

Slide 80

Slide 80 text

 ϫΠ͸͜͏΍ͬͯΔͥʂ ͱ͍͏ͷ͕͋Ε͹ੋඇ࠙਌ձͰڭ͑ͯԼ͍͞ʂ

Slide 81

Slide 81 text

 ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠