Slide 49
Slide 49 text
References I
B. Colnet, J. Josse, G. Varoquaux, and E. Scornet. Reweighting the rct for generalization:
finite sample error and variable selection. arXiv:2208.07614, 2023a.
B. Colnet, J. Josse, G. Varoquaux, and E. Scornet. Risk ratio, odds ratio, risk difference...
which causal measure is easier to generalize? arXiv:2303.16008, 2023b.
B. Colnet, I. Mayer, G. Chen, A. Dieng, R. Li, G. Varoquaux, J.-P. Vert, J. Josse, and S. Yang.
Causal inference methods for combining randomized trials and observational studies:
a review. Statistical Science, 2024.
M. Doutreligne and G. Varoquaux. How to select predictive models for decision making
or causal inference? 2023. URL https://hal.science/hal-03946902.
S. MacMahon, R. Peto, R. Collins, J. Godwin, J. Cutler, P. Sorlie, R. Abbott, J. Neaton, A. Dyer,
and J. Stamler. Blood pressure, stroke, and coronary heart disease: part 1, prolonged
differences in blood pressure: prospective observational studies corrected for the
regression dilution bias. The Lancet, 335(8692):765–774, 1990.
X. Nie and S. Wager. Quasi-oracle estimation of heterogeneous treatment effects.
Biometrika, 108(2):299–319, 2021.
G Varoquaux 38