Slide 16
Slide 16 text
ˆ
f[m] =
N 1
n=0
f[n]e 2i
N
mn
Fourier Transforms
Discrete
Infinite Periodic
f[n], n Z f[n], 0 n < N
Periodization
Continuous
f0
(t), t R f0
(t), t [0, 1]
f0
(t) ⇥
n
f0
(t + n)
Sampling
ˆ
f0
( ) ⇥ { ˆ
f0
(k)}k
Discrete
Infinite
Periodic
Continuous
Sampling
ˆ
f[k], 0 k < N
ˆ
f0
( ), R ˆ
f0
[k], k Z
Fourier transform
Isometry f ⇥ ˆ
f
ˆ
f0
( ) =
+⇥
⇥
f0
(t)e i tdt
ˆ
f0
[m] =
1
0
f0
(t)e 2i mtdt
ˆ
f( ) =
n Z
f[n]ei n
ˆ
f(⇥), ⇥ [0, 2 ]
Periodization
ˆ
f(⇥) =
k
ˆ
f0
(N(⇥ + 2k )) f[n] = f0
(n/N)