Slide 1

Slide 1 text

Fourier Processing Gabriel Peyré http://www.ceremade.dauphine.fr/~peyre/numerical-tour/

Slide 2

Slide 2 text

Overview •Continuous Fourier Basis •Discrete Fourier Basis •Sampling •2D Fourier Basis •Fourier Approximation

Slide 3

Slide 3 text

m (x) = em (x) = e2i mx Continuous Fourier Bases Continuous Fourier basis:

Slide 4

Slide 4 text

m (x) = em (x) = e2i mx Continuous Fourier Bases Continuous Fourier basis:

Slide 5

Slide 5 text

Fourier and Convolution

Slide 6

Slide 6 text

Fourier and Convolution x− x+ x 1 2 1 2 f f ∗1[− 1 2 , 1 2 ]

Slide 7

Slide 7 text

Fourier and Convolution x− x+ x 1 2 1 2 f f ∗1[− 1 2 , 1 2 ] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Slide 8

Slide 8 text

Fourier and Convolution x− x+ x 1 2 1 2 f f ∗1[− 1 2 , 1 2 ] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Slide 9

Slide 9 text

Overview •Continuous Fourier Basis •Discrete Fourier Basis •Sampling •2D Fourier Basis •Fourier Approximation

Slide 10

Slide 10 text

Discrete Fourier Transform

Slide 11

Slide 11 text

Discrete Fourier Transform

Slide 12

Slide 12 text

Discrete Fourier Transform ˆ g[m] = ˆ f[m] · ˆ h[m]

Slide 13

Slide 13 text

Discrete Fourier Transform ˆ g[m] = ˆ f[m] · ˆ h[m]

Slide 14

Slide 14 text

Overview •Continuous Fourier Basis •Discrete Fourier Basis •Sampling •2D Fourier Basis •Fourier Approximation

Slide 15

Slide 15 text

Infinite continuous domains: Periodic continuous domains: Infinite discrete domains: Periodic discrete domains: f0 (t), t R f0 (t), t ⇥ [0, 1] R/Z The Four Settings ˆ f[m] = N 1 n=0 f[n]e 2i N mn ˆ f0 ( ) = +⇥ ⇥ f0 (t)e i tdt ˆ f0 [m] = 1 0 f0 (t)e 2i mtdt ˆ f( ) = n Z f[n]ei n Note: for Fourier, bounded periodic. .. . .. . .. . .. . f[n], n Z f[n], n ⇤ {0, . . . , N 1} ⇥ Z/NZ

Slide 16

Slide 16 text

ˆ f[m] = N 1 n=0 f[n]e 2i N mn Fourier Transforms Discrete Infinite Periodic f[n], n Z f[n], 0 n < N Periodization Continuous f0 (t), t R f0 (t), t [0, 1] f0 (t) ⇥ n f0 (t + n) Sampling ˆ f0 ( ) ⇥ { ˆ f0 (k)}k Discrete Infinite Periodic Continuous Sampling ˆ f[k], 0 k < N ˆ f0 ( ), R ˆ f0 [k], k Z Fourier transform Isometry f ⇥ ˆ f ˆ f0 ( ) = +⇥ ⇥ f0 (t)e i tdt ˆ f0 [m] = 1 0 f0 (t)e 2i mtdt ˆ f( ) = n Z f[n]ei n ˆ f(⇥), ⇥ [0, 2 ] Periodization ˆ f(⇥) = k ˆ f0 (N(⇥ + 2k )) f[n] = f0 (n/N)

Slide 17

Slide 17 text

Sampling and Periodization (a) (c) (d) (b) 1 0

Slide 18

Slide 18 text

Sampling and Periodization: Aliasing (b) (c) (d) (a) 0 1

Slide 19

Slide 19 text

Uniform Sampling and Smoothness

Slide 20

Slide 20 text

Uniform Sampling and Smoothness

Slide 21

Slide 21 text

Uniform Sampling and Smoothness

Slide 22

Slide 22 text

Uniform Sampling and Smoothness

Slide 23

Slide 23 text

Overview •Continuous Fourier Basis •Discrete Fourier Basis •Sampling •2D Fourier Basis •Fourier Approximation

Slide 24

Slide 24 text

2D Fourier Basis em [n] = 1 N e 2i N0 m1n1+ 2i N0 m2n2 = em1 [n1 ]em2 [n2 ]

Slide 25

Slide 25 text

2D Fourier Basis em [n] = 1 N e 2i N0 m1n1+ 2i N0 m2n2 = em1 [n1 ]em2 [n2 ]

Slide 26

Slide 26 text

Overview •Continuous Fourier Basis •Discrete Fourier Basis •Sampling •2D Fourier Basis •Fourier Approximation

Slide 27

Slide 27 text

1D Fourier Approximation

Slide 28

Slide 28 text

1D Fourier Approximation 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Slide 29

Slide 29 text

2D Fourier Approximation