Slide 1

Slide 1 text

29 Applications, limitations, and future directions of spatial transcriptomics technology in the human brain Kristen Maynard, Ph.D. Leonardo Collado-Torres, Ph.D. Lieber Institute for Brain Development IBANGS Transcriptomics Workshop May 23, 2022 Keri Martinowich Stephanie C Hicks Lieber Institute Johns Hopkins @kr_maynard @lcolladotor #spatialLIBD

Slide 2

Slide 2 text

The spatial architecture of the brain is fundamentally connected to its function 2 chartdiagram.com slideshare.net

Slide 3

Slide 3 text

Laminar position of a cell influences its gene expression, morphology, physiology, and function 3 Kwan et al., 2012, Development

Slide 4

Slide 4 text

4 Image Credit: Bo Xia, https://twitter.com/boxia7/status/1261464021322137600?s=12 Studying gene expression in human brain Bulk RNA-seq Single cell/nucleus RNA-seq Spatial transcriptomics

Slide 5

Slide 5 text

Visium & Single nucleus RNA-sequencing technologies (Commercial platform 10x Genomics) 5 Single Cell Gene Expression Spatial Gene Expression

Slide 6

Slide 6 text

Overview 6 1. Identification of layer-enriched genes in human cortex using Visium. 2. Spatial registration of single-nucleus RNA-seq data. 3. Resources and tools for analysis of spatial transcriptomics data. 4. Using spatial transcriptomics to better understand brain disorders.

Slide 7

Slide 7 text

Study design for Visium experiments in dorsolateral prefrontal cortex (DLPFC) 7 Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 8

Slide 8 text

Visualizing gene expression in a histological context 8 logcounts logcounts logcounts Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 9

Slide 9 text

2 pairs spatial adjacent replicates x subject = 12 sections 9 Subject 1 Subject 2 Subject 3 Adjacent spatial replicates (0µm) Adjacent spatial replicates (300µm) PCP4 Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 10

Slide 10 text

“Pseudo-bulking” collapses data: spot to layer level 10 Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 11

Slide 11 text

Three statistical models to assess laminar enrichment “ANOVA” model 11 “Enrichment” model “Pairwise” model Is any layer different? Is one layer > the rest? Is layer X > layer Y? Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 12

Slide 12 text

12 Identification of laminar enriched genes “Enrichment” model Is one layer > the rest? Group FDR<0.05 Layer1 3033 Layer2 1562 Layer3 183 Layer4 740 Layer5 643 Layer6 379 WM 9124 Only a subset of previous layer marker genes in mouse and human showed laminar association Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 13

Slide 13 text

13 ISH images courtesy of Allen Human Brain Atlas: http://human.brain-map.org/ (Hawrylycz et al., 2012) Visium replicates layer-enrichment of previously identified layer marker genes L4>rest, p=1.74e-09 L6>WM, p=4.48e-19 logcounts logcounts Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 14

Slide 14 text

Identification & validation of novel layer-enriched genes 14 L5>rest, p=4.33e-12 L6>rest, p=5.05e-12 L1>rest, p=1.47e-10 L2>rest, p=9.73e-11 ”dotdotdot” for smFISH analysis Maynard et al, Nucleic Acids Research, 2020

Slide 15

Slide 15 text

15 Segmentation of histology data identifies spots containing single cell bodies and neuropil 50um Gray matter White matter Neuron Neuropil Glial cell Mouse Brain Tissue Postmortem Human DLPFC Madhavi Tippani @MadhaviTippani Joseph L Catallini II

Slide 16

Slide 16 text

http://spatial.libd.org/spatialLIBD/ Maynard, Collado-Torres, et al, Nature Neuroscience, 2021

Slide 17

Slide 17 text

Overview 17 1. Identification of layer-enriched genes in human cortex using Visium. 2. Spatial registration of single-nucleus RNA-seq data. 3. Resources and tools for analysis of spatial transcriptomics data. 4. Using spatial transcriptomics to better understand brain disorders.

Slide 18

Slide 18 text

L4 L3 L2 L1 (A) (B) (C) Maynard, Collado-Torres, et al, Nature Neuroscience, 2021 Spatial registration of sc/snRNA-seq data snRNA-seq data from Allen Institute: manual dissection of cortical layers from middle temporal gyrus (Hodge et al, Nature, 2019) Visium

Slide 19

Slide 19 text

19 Matthew N Tran @mattntran Generation of snRNA-seq data in DLPFC n= 5,231 total nuclei n= 2 neurotypical donors n=6 broad cell classes n= 30 preliminary clusters (20 neuronal)

Slide 20

Slide 20 text

Maynard, Collado-Torres, et al, Nature Neuroscience, 2021 WM Layer6 Layer5 Layer4 Layer3 Layer2 Layer1 22 (Oligo) 3 (Oligo) 23 (Oligo) 17 (Oligo) 21 (Oligo) 7 (Astro) 5 (Astro) 9 (OPC) 26 (OPC) 1 (Micro) 24 (Drop) 13 (Excit) 10 (Excit) 27 (Excit) 29 (Inhib) 14 (Inhib) 15 (Inhib) 18 (Inhib) 2 (Excit) 31 (Excit) 8 (Excit) 16 (Inhib) 28 (Inhib) 30 (Inhib) 20 (Inhib) 11 (Inhib) 25 (Inhib) 4 (Excit) 12 (Excit) 6 (Excit) 19 (Excit) −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 Spatial registration of snRNA-seq data in DLPFC DLPFC snRNA-seq clusters Visium Data

Slide 21

Slide 21 text

Spatial registration of sc/snRNA-seq data in Alzheimer’s Disease snRNAseq data from Mathys et al, Nature, 2019

Slide 22

Slide 22 text

22 Matthew N Tran @mattntran https://libd.shinyapps.io/tran2021_AMY/

Slide 23

Slide 23 text

23

Slide 24

Slide 24 text

24 Image Credit @bayraktar_lab

Slide 25

Slide 25 text

Overview 25 1. Identification of layer-enriched genes in human cortex using Visium. 2. Spatial registration of single-nucleus RNA-seq data. 3. Resources and tools for analysis of spatial transcriptomics data. 4. Using spatial transcriptomics to better understand brain disorders.

Slide 26

Slide 26 text

bioconductor.org/packages/spatialLIBD Pardo et al, bioRxiv, 2021, https://doi.org/10.1101/2021.04.29.440149 Maynard, Collado-Torres, Nat Neuro, 2021 Brenda Pardo Abby Spangler @PardoBree @abspangler Accepted at BMC Genomics

Slide 27

Slide 27 text

27 SpatialExperiment: infrastructure for spatially resolved transcriptomics data in R using Bioconductor Righelli, Weber, Crowell, et al, Bioinformatics, 2022 DOI https://doi.org/10.1093/bioinformatics/btac299 Dario Righellli Helena L Crowell @drighelli @CrowellHL Lukas M Weber @lmwebr

Slide 28

Slide 28 text

28 Madhavi Tippani @MadhaviTippani bioRxiv, doi: https://doi.org/10.1101/2021.08.04.452489

Slide 29

Slide 29 text

29

Slide 30

Slide 30 text

30 Zhao et al, Nature Biotechnology, 2021

Slide 31

Slide 31 text

31 Zhao et al, Nature Biotechnology, 2021

Slide 32

Slide 32 text

Openly sharing data accelerates science: share and you will reap the benefits too! 32 Us: 346 days Them: 271 days Total sequential (fictional): 617 days Reality (preprint to BayesSpace pub): 461 days Difference saved: 156 days Preprints: 190 days

Slide 33

Slide 33 text

33 What helps also: provide a ground truth and a path towards benchmarking • Fully unsupervised was initially very far from the ground truth • Truth has caveats and should be considered a guideline • Ultimately, the goal is not to fully reproduce the ground truth, but learn what helps and what doesn’t • Ground truth will evolve ;)

Slide 34

Slide 34 text

34 High accessions, citations, AltMetric, … This data is way more challenging than the mouse: mouse you are looking at different brain regions

Slide 35

Slide 35 text

Unsupervised clustering across all samples 35 0.0 0.2 0.4 0.6 Graph−Based Graph−based(BC) BayesSpace BayesSpace(BC) SpaGCN Clustering Method Adjusted Rand Index You want to do this if you want cluster 1 from sample 1 to mean the same thing as cluster 1 from sample 2 Batch correction (BC) helps BayesSpace + BC was the best option we checked Abby Spangler @abspangler @Nick-Eagles (GH) Nicholas J Eagles

Slide 36

Slide 36 text

The Development Process - Making a module - New, experimental software can change dramatically (function and syntax) between versions - Promotes collaboration by allowing two researchers to share exact code and instantly run software without special set-up SpatialExperiment release 3.14 SpatialExperiment devel 3.15 module load tangram/1.0.2 module load cell2location/0.8a0 module load spagcn/1.2.0 @Nick-Eagles (GH) Nicholas J Eagles https://github.com/LieberInstitute/jhpce_mod_source https://github.com/LieberInstitute/jhpce_module_config

Slide 37

Slide 37 text

The Development Process - Regular interaction with software authors to clarify functionality and report bugs - Documentation for code and author responsiveness on GitHub can be critical in successfully applying software to our data @Nick-Eagles (GH) Nicholas J Eagles

Slide 38

Slide 38 text

Documentation + wrapper functions + tests (GitHub Actions + Bioconductor) 38 http://bioconductor.org/packages/spatialLIBD http://bioconductor.org/packages/release/data/experiment/vignettes/spatialLIBD/ inst/doc/TenX_data_download.html

Slide 39

Slide 39 text

Overview 39 1. Identification of layer-enriched genes in human cortex using Visium. 2. Spatial registration of single-nucleus RNA-seq data. 3. Resources and tools for analysis of spatial transcriptomics data. 4. Using spatial transcriptomics to better understand brain disorders.

Slide 40

Slide 40 text

Gandal et al, Science, 2018 SFARI GENE; 2.0 by Abrahams et al, Mol Autism, 2013 Jaffe et al, Nature Neuroscience, 2020 - Curated lists - GWAS/TWAS hits - Differential expression - … Layer-enriched gene expression profiling

Slide 41

Slide 41 text

0 2 4 6 8 10 12 WM L6 L5 L4 L3 L2 L1 SFAR I ASC 102 ASD 53 D D ID 49 D E.U p D E.D ow n 2.7 2.1 2.7 4 3.6 4.9 4.5 2.5 5 2.8 5 6.4 2.8 ASD 0 2 4 6 8 10 12 WM L6 L5 L4 L3 L2 L1 PE.U p PE.D ow n BS2.U p BS2.D ow n BS2.U p BS2.D ow n PE.U p PE.D ow n 2.1 2 3.1 1.8 2.2 1.8 8.8 5 2.7 2.6 4.6 6&='í'( 6&='í7:$6 (A) (B) DIY at http://spatial.libd.org/spatialLIBD/ Laminar-enrichment of clinical gene sets Autism Spectrum Disorder (ASD) • SFARI: Abrahams et al, Mol Autism, 2013 • ASC102: Satterstrom et al, Cell, 2020 Break up into: • ASD53: ASD dominant traits • DDID49: neurodevelopmental delay COLOR is significance (-log10[p]) NUMBER is enrichment (odds ratio) 41 Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 42

Slide 42 text

0 2 4 6 8 10 12 WM L6 L5 L4 L3 L2 L1 SFAR I ASC 102 ASD 53 D D ID 49 D E.U p D E.D ow n 2.7 2.1 2.7 4 3.6 4.9 4.5 2.5 5 2.8 5 6.4 2.8 ASD 0 2 4 6 8 10 12 WM L6 L5 L4 L3 L2 L1 PE.U p PE.D ow n BS2.U p BS2.D ow n BS2.U p BS2.D ow n PE.U p PE.D ow n 2.1 2 3.1 1.8 2.2 1.8 8.8 5 2.7 2.6 4.6 6&='í'( 6&='í7:$6 (A) (B) DIY at http://spatial.libd.org/spatialLIBD/ Layer-enriched gene expression profiling Gandal et al, Science, 2018 Collado-Torres et al, Neuron, 2019 Maynard, Collado-Torres, Nat Neuro, 2021

Slide 43

Slide 43 text

43 Adopted and modified from B Wang (2018) and the Brain from the Top to Bottom in McGill University Progressive neurodegeneration in Alzheimer’s disease

Slide 44

Slide 44 text

Integration of proteomic and transcriptomic data with Visium-Immunofluorescence (Visium-IF) 44 Can we define pathology-associated changes in gene expression in Alzheimer’s Disease in human brain?

Slide 45

Slide 45 text

45 Visium-IF AD Study Design (Inferior Temporal Cortex) Sang Ho Kwon @sanghokwon17 (Kwon et al., in preparation)

Slide 46

Slide 46 text

46 Case AgeDeath Race RIN Braak CERAD Neurotypical Br3874 73 EUR/CAUC 7.2 B2 C0 AD #1 Br3854 65 EUR/CAUC 7.0 B3 C3 AD #2 Br3873 88 EUR/CAUC 7.2 B3 C3 AD #3 Br3880 90 EUR/CAUC 7.1 B3 C3 Study design Whole genome + Targeted sequencing

Slide 47

Slide 47 text

10X Genomics Targeted Gene Expression 47 1.Target-specific enrichment 2. Lower sequencing cost (~90%)

Slide 48

Slide 48 text

Human Neuroscience Panel 48 Layer Gene Ensemble ID L1 RELN ENSG00000189056 L2 & L3 CALB1 ENSG00000104327 L4 PVALB ENSG00000100362 L5 HTR2C ENSG00000147246 L6 NR4A2 ENSG00000153234 WM NKX6-2 ENSG00000148826 Maynard et al, Nature Neuroscience, 2021 http://spatial.libd.org/spatialLIBD *Layer-specific/associated genes *AD-associated genes

Slide 49

Slide 49 text

Visium * ~5k spots in honeycomb * gene expression per spot * tissue (H&E staining) Immunofluorescence (IF) * multi-channel (6) images * identifies morphological features of interest * large: might be broken in tiles Channel 1 * triangle feature Channel 2 * cloud feature Channel 6 * xyz feature Tissue (bright field image) Visium spot Channel 1 feature Channel 2 feature + Visium-IF raw data: 2 types

Slide 50

Slide 50 text

Spot ID # Triangle # Cloud % triangle % cloud spot0001 0 12 0 17 spot0002 4 0 27 0 Merge Visium & IF IF Spot ID Gene 1 Gene 2 Gene X In Tissue # cells spot0001 0 12 39 true 3 spot0002 4 0 27 false 0 Visium downstream * QC * analyses

Slide 51

Slide 51 text

51 Registering pathology maps with gene expression spots Madhavi Tippani @MadhaviTippani (Kwon et al., in preparation) Prop IF/Spot VistoSeg now supports Visium-IF

Slide 52

Slide 52 text

Annotating and pseudo-bulking spots by pathology for differential expression analyses 52 Sowmya Parthiban @sowmyapartybun (Kwon et al., in preparation)

Slide 53

Slide 53 text

53 0.0 2.5 5.0 7.5 10.0 V10A27106_A1_Br387402%3 0 1 2 3 4 5 V10T31036_A1_Br387402%3 0 1 2 3 V10A27004_A1_Br387402%3 0 50 100 150 0 10 20 30 V10A27106_A1_Br3874 SNAP25 0 10 20 30 10T31036_A1_Br3874 SNAP25 10A27004_A1_Br3874 SNAP25 1 2 V10A27106_A1_Br3874 1 2 V10T31036_A1_Br3874 1 2 V10A27004_A1_Br3874

Slide 54

Slide 54 text

54 1 2 V10A27106_B1_Br3854 1 2 V10A27106_C1_Br3873 1 2 V10A27106_D1_Br3880 1 2 V10T31036_B1_Br3854 1 2 V10T31036_C1_Br3873 1 2 V10T31036_D1_Br3880 1 2 V10A27004_D1_Br3880

Slide 55

Slide 55 text

55 none Ab+ next_Ab+ pT+ next_pT+ both next_both V10A27106_B1_Br3854 none Ab+ next_Ab+ pT+ next_pT+ both next_both V10A27106_C1_Br3873 none Ab+ next_Ab+ pT+ next_pT+ both next_both V10A27106_D1_Br3880 none Ab+ next_Ab+ pT+ next_pT+ both next_both V10T31036_B1_Br3854 none Ab+ next_Ab+ pT+ next_pT+ both next_both V10T31036_C1_Br3873 none Ab+ next_Ab+ pT+ next_pT+ both next_both V10T31036_D1_Br3880 none Ab+ next_Ab+ pT+ next_pT+ both next_both V10A27004_D1_Br3880

Slide 56

Slide 56 text

Pathology is less common in the white matter 56 640 155 49 6 55 17 709 15 438 43 156 309 7 709 104 581 11 1193 49 2 3 1 12 277 631 73 73 57 283 1776 21 666 68 148 3 301 20 376 46 30 10 44 14 1757 37 831 67 132 4 137 19 1448 102 279 21 883 73 4 11 6 219 524 15 36 17 141 2450 54 712 136 117 1 121 31 205 899 45 39 35 141 2112 22 556 101 173 1 216 13 S1_B1_3854 S1_C1_3873 S1_D1_3880 S2_B1_3854 S2_C1_3873 S2_D1_3880 S3_D1_3880 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0% 25% 50% 75% 100% Percentage

Slide 57

Slide 57 text

Gray matter only pseudo-bulk analysis 57 P1 P7 Pathology Pathology Groups

Slide 58

Slide 58 text

58 Whole genome Targeted sequencing −20 −10 0 10 20 −20 0 20 40 60 80 runPCA 01 (42%) runPCA 02 (10%) path_groups none Ab+ next_Ab+ pT+ next_pT+ both next_both −20 −10 0 10 20 −20 0 20 40 60 80 runPCA 01 (42%) runPCA 02 (10%) sample_id V10A27004_D1_Br3880 V10A27106_B1_Br3854 V10A27106_C1_Br3873 V10A27106_D1_Br3880 V10T31036_B1_Br3854 V10T31036_C1_Br3873 V10T31036_D1_Br3880 −20 0 20 40 −25 0 25 50 runPCA 01 (33%) runPCA 02 (17%) path_groups none Ab+ next_Ab+ pT+ next_pT+ both next_both −20 0 20 40 −25 0 25 50 runPCA 01 (33%) runPCA 02 (17%) sample_id V10A27004_D1_Br3880 V10A27106_B1_Br3854 V10A27106_C1_Br3873 V10A27106_D1_Br3880 V10T31036_B1_Br3854 V10T31036_C1_Br3873 V10T31036_D1_Br3880

Slide 59

Slide 59 text

Identification of genes associated with AD pathology 59 (Kwon et al., in preparation) p<0.05 in targeted sequencing panel

Slide 60

Slide 60 text

Working with Visium • It’s very powerful • Open source friendly • 6.5 mm2 too restrictive? Opportunity for creativity • Visium and Visium-IF have required the development of software • It’s fun to work on something where there are no answers on Google =) but also a challenge 60

Slide 61

Slide 61 text

61 @HeenaDivecha Heena R Divecha

Slide 62

Slide 62 text

62 B1 A1 D1 C1 C1 B1 A1 D1 @CerceoPage Stephanie C Page

Slide 63

Slide 63 text

Summary 63 • Identification of layer-enriched genes in human dorsolateral prefrontal cortex using Visium technology. • Spatial registration of single-nucleus RNA-seq data to determine enrichment of cell populations in specific cortical layers. • Single nucleus and spatial transcriptomics approaches can be used to better understand molecular associations with brain disorders, including neurodevelopmental and neurodegenerative disorders. • Development of tools and resources to analyze spatial transcriptomics data.

Slide 64

Slide 64 text

Future Directions • Integration of proteomic and transcriptomic data • Visium-IF AD proof-of-concept • Integration of snRNA-seq and Visium data • Visium + snRNA-seq on LC • Increasing resolution (# spots) and area (array size) • Visium HD • Leveraging rich histology/imaging data • Clustering (SpaGCN), spot deconvolution, etc. • Building educational resources • Completing Orchestrating Spatially Resolved Transcriptomics Analysis with Bioconductor (OSTA) 64

Slide 65

Slide 65 text

#spatialLIBD is a supportive LIBD & JHU team 65 Check for your yourself at https://twitter.com/lcolladotor/status/1516587531369811971 https://lcolladotor.github.io/team_surveys/

Slide 66

Slide 66 text

We are hiring! https://www.libd.org/careers/ 66

Slide 67

Slide 67 text

Acknowledgements Lieber Institute Sang Ho-Kwon MadhaviTippani Abby Spanger Brenda Pardo Joseph L. Catallini II Matthew N. Tran Vijay Sadashivaiah Heena Divecha Kelsey Montgomery Nick Eagles Josh Stolz Louise Huuki Rahul Bharadwaj Stephanie Page Leonardo Collado-Torres Keri Martinowich Andrew Jaffe Joel E. Kleinman Thomas M. Hyde Daniel R. Weinberger JHU Biostatistics Dept Stephanie Hicks Lukas Weber Sowmya Parthiban 10x Genomics Courtney Anderson Cedric Uytingco Stephen R. Williams Charles Bruce Jennifer Chew YifengYin Nikhil Rao Michelle Mak Guixia Yu Julianna Avalos-Gracia JHU Oncology Tissue Services (Kristen Lecksell) JHU SKCCC Flow Core (Jessica Gucwa) JHU Transcriptomics & Deep Sequencing Core (Linda Orzolek) JHU Tumor Microenvironment Core (Liz Engle) We are hiring! https://www.libd.org/careers/ @kr_maynard @lcolladotor #spatialLIBD team

Slide 68

Slide 68 text

68 https://twitter.com/bayraktar_lab/status/1481719801789939712