Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
WSDM 2016勉強会 「Wiggins: Detecting Valuable Information in Dynamic Networks Using Limited Resources」 Ahmad Mahmoody, Matteo Riondato, Eli Upfal 株式会社リクルートコミュニケーションズ ICTソリューション局アドテクノロジーサービス開発部 高柳慎一
Slide 2
Slide 2 text
モチベーション • 動的ネットワーク上での情報検知は有用 – 新しいWebページの検出 – 電気回路上での欠陥の伝搬 – 水の汚染の検出 • 情報がネットワーク上を伝搬していく • 情報を新規性のあるうちに見つけたい • 一方、全ノードを常に監視するのは難しい – 各時点において一部のノードを調査できる状況を考える • どうノードを調査すべきかの最適なスケジューリン グを考えたい 2
Slide 3
Slide 3 text
やったこと • 各種定義 – ネットワーク上での情報の生成と伝搬過程の定式化 • (明示的に書いてないけど)測度論ベース – スケジュールに沿ったノードの調査法の定義 – 異なるスケジュール間のコストを定義 • これらを最適調査計画問題(Optimal Probing Schedule Problem)として定義づける • 制約付の凸計画問題として定式化し、それを解くた めにWIGGINSというアルゴリズム提案 – MapReduce適用な形で提案 – WIGGINSってのはシャーロックホームズに出てくる諜報 機関?のリーダの名前らしい 3
Slide 4
Slide 4 text
2:問題の定式化 • グラフ構造: • ノード数: • ノードの部分集合族: • ある関数(確率): : → • グラフ上での情報生成・伝搬過程: – 時点tにおいて生成される情報(集合族): – あるノード部分集合 が に含まれる確率 • Sは論文中ではσ加法族と区別するために導入 – 単なるVの部分集合と考える、かつ、その生起確率を定義 • (t, S): “時点tに生成された情報が 手元にある る”を表現(アイテムと呼称) 4
Slide 5
Slide 5 text
2:問題の定式化 • “時点tにおいて調査する” =アイテム集合を得る • 過去に生成された情報の和集合: • 全時点ではc個のノードのみを調べる • :時点tより以前に取得 • :時点tにおいてまだここにない • 情報の新規性: • まだ見ぬ情報集合 によるLoad 5
Slide 6
Slide 6 text
• スケジュールpはノードV上の確率分布 • 時点tにおいてc個のうち 個ノードを選択 • コスト関数を定義(スケジュールpに依存!) • これを解く: (θ, c)-OPSP – (θ, c)-Optimal Probing Schedule Problem – スケジュール集合: 6 2:問題の定式化
Slide 7
Slide 7 text
3: 関連研究 • 水汚染の検出[1, 13, 20, 24, 29] • 伝染病の検出[7] • センサーのバッテリー消費最適化[11, 19, 21, 22] • SNS上での急伸トピックの検出[4, 25] • クローリング [8, 32] • ニュースフィードの更新[3, 15, 28, 30] 7
Slide 8
Slide 8 text
4:WIGGINSアルゴリズム • が既知の場合 • は凸関数 • 拘束条件付きの最適化問題として以下を解く 8
Slide 9
Slide 9 text
4:WIGGINSアルゴリズム 9
Slide 10
Slide 10 text
• 限られた(離散的な)情報しかわからない場合 • アルゴリズムはこの部分だけを変更する • Sごとにmapして計算(mapReduce) 10 4:WIGGINSアルゴリズム
Slide 11
Slide 11 text
5:数値実験 • Independent-Cascade (IC) model [17]を使用 • 生成(creation)フェイズ – ノード上に噂”rumor”を生成し、そのノードの出次数 (出 て行く辺数、outdegree, deg+)に応じて確率にbiasを付 けて生成を行わせる • 伝搬(diffusion)フェイズ – 確率1/伝搬先の入次数(入ってくる辺数indegree, deg-) で伝搬 11
Slide 12
Slide 12 text
• 他のベンチマーク的な方法 – 一様、out or indegree・接続数に比例で選択 • これらに比べてコスト関数が小さくなる 12 5:数値実験
Slide 13
Slide 13 text
• 一度最適化したもの に負荷を与える(灰 色箇所始端からノー ドの値をランダムに ひっくり返す) • 緑色箇所にてまた最 適化計算 13 5:数値実験
Slide 14
Slide 14 text
• ノイズの影響がまた消える 14 5:数値実験
Slide 15
Slide 15 text
まとめ • ネットワーク上での情報の生成と伝搬過程の定式化 • (明示的に書いてないけど)測度論ベース – スケジュールに沿ったノードの調査法の定義 – 異なるスケジュール間のコストを定義 • これらを最適調査計画問題(Optimal Probing Schedule Problem)として定式化 • 制約付の凸計画問題として定式化し、それを解くた めにWIGGINSというアルゴリズム提案 • 数値検証実施 15