Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
@ Apache Kafka A Streaming Data Platform
Slide 2
Slide 2 text
@ @gamussa @confluentinc Who am I?
Slide 3
Slide 3 text
@ @gamussa @confluentinc Solutions Architect Who am I?
Slide 4
Slide 4 text
@ @gamussa @confluentinc Solutions Architect Developer Advocate Who am I?
Slide 5
Slide 5 text
@ @gamussa @confluentinc Solutions Architect Developer Advocate @gamussa in internetz Who am I?
Slide 6
Slide 6 text
@ @gamussa @confluentinc Solutions Architect Developer Advocate @gamussa in internetz Hey you, yes, you, go follow me in twitter © Who am I?
Slide 7
Slide 7 text
@ @gamussa @confluentinc
Slide 8
Slide 8 text
@ @gamussa @confluentinc A company is build on
Slide 9
Slide 9 text
@ @gamussa @confluentinc A company is build on DATA FLOWS but All we have is DATA STORES
Slide 10
Slide 10 text
@ @gamussa @confluentinc
Slide 11
Slide 11 text
@ @gamussa @confluentinc
Slide 12
Slide 12 text
@ @gamussa @confluentinc
Slide 13
Slide 13 text
@ @gamussa @confluentinc
Slide 14
Slide 14 text
@ @gamussa @confluentinc
Slide 15
Slide 15 text
@ @gamussa @confluentinc
Slide 16
Slide 16 text
@ @gamussa @confluentinc Streaming Platform 1. Pub/Sub 2. Store 3. Process
Slide 17
Slide 17 text
@ @gamussa @confluentinc Streaming Platform 1. Pub/Sub 2. Store 3. Process
Slide 18
Slide 18 text
@ @gamussa @confluentinc Core abstraction
Slide 19
Slide 19 text
@ @gamussa @confluentinc Core abstraction DB - table
Slide 20
Slide 20 text
@ @gamussa @confluentinc Core abstraction DB - table Hadoop - file
Slide 21
Slide 21 text
@ @gamussa @confluentinc Core abstraction DB - table Hadoop - file Messaging -?
Slide 22
Slide 22 text
@ @gamussa @confluentinc LOGS
Slide 23
Slide 23 text
@ @gamussa @confluentinc Producing to Kafka Time
Slide 24
Slide 24 text
@ @gamussa @confluentinc Producing to Kafka Time C C C
Slide 25
Slide 25 text
@ @gamussa @confluentinc Producing to Kafka - With Key Time A B C D hash(key) % numPartitions = N
Slide 26
Slide 26 text
@ @gamussa @confluentinc Producing to Kafka - No Key Time Messages will be produced in a round robin fashion
Slide 27
Slide 27 text
@ @gamussa @confluentinc Producing to Kafka - No Key Time Messages will be produced in a round robin fashion
Slide 28
Slide 28 text
@ @gamussa @confluentinc Producing to Kafka - No Key Time Messages will be produced in a round robin fashion
Slide 29
Slide 29 text
@ @gamussa @confluentinc Producing to Kafka - No Key Time Messages will be produced in a round robin fashion
Slide 30
Slide 30 text
@ @gamussa @confluentinc Consuming From Kafka - Single Consumer C
Slide 31
Slide 31 text
@ @gamussa @confluentinc Consuming From Kafka - Grouped Consumers C C C1 C C C2
Slide 32
Slide 32 text
@ @gamussa @confluentinc Consuming From Kafka - Grouped Consumers C C C C
Slide 33
Slide 33 text
@ @gamussa @confluentinc Consuming From Kafka - Grouped Consumers 0 1 2 3
Slide 34
Slide 34 text
@ @gamussa @confluentinc Consuming From Kafka - Grouped Consumers 0 1 2 3
Slide 35
Slide 35 text
@ @gamussa @confluentinc Consuming From Kafka - Grouped Consumers 0, 3 1 2 3
Slide 36
Slide 36 text
@ @gamussa @confluentinc Producers Consumers
Slide 37
Slide 37 text
@ @gamussa @confluentinc
Slide 38
Slide 38 text
@ @gamussa @confluentinc
Slide 39
Slide 39 text
@ @gamussa @confluentinc
Slide 40
Slide 40 text
@ @gamussa @confluentinc Kafka Connect does hard work so you don’t
Slide 41
Slide 41 text
@ @gamussa @confluentinc Kafka Connect does hard work so you don’t 1. Scale out
Slide 42
Slide 42 text
@ @gamussa @confluentinc Kafka Connect does hard work so you don’t 1. Scale out
Slide 43
Slide 43 text
@ @gamussa @confluentinc Kafka Connect does hard work so you don’t 1. Scale out
Slide 44
Slide 44 text
@ @gamussa @confluentinc Kafka Connect does hard work so you don’t 1. Scale out
Slide 45
Slide 45 text
@ @gamussa @confluentinc
Slide 46
Slide 46 text
@ @gamussa @confluentinc
Slide 47
Slide 47 text
@ @gamussa @confluentinc
Slide 48
Slide 48 text
@ @gamussa @confluentinc
Slide 49
Slide 49 text
@ @gamussa @confluentinc Streaming Platform 1. Pub/Sub 2. Store 3. Process
Slide 50
Slide 50 text
@ @gamussa @confluentinc Why Store?
Slide 51
Slide 51 text
@ @gamussa @confluentinc Scalability of a filesystem
Slide 52
Slide 52 text
@ @gamussa @confluentinc Scalability of a filesystem Throughput 100s mb/s
Slide 53
Slide 53 text
@ @gamussa @confluentinc Scalability of a filesystem Throughput 100s mb/s TBs per server
Slide 54
Slide 54 text
@ @gamussa @confluentinc Scalability of a filesystem Throughput 100s mb/s TBs per server Commodity Hardware
Slide 55
Slide 55 text
@ @gamussa @confluentinc Scalability of a filesystem Throughput 100s mb/s TBs per server Commodity Hardware O(1) writes
Slide 56
Slide 56 text
@ @gamussa @confluentinc Guarantees of a database
Slide 57
Slide 57 text
@ @gamussa @confluentinc Guarantees of a database Persistence
Slide 58
Slide 58 text
@ @gamussa @confluentinc Guarantees of a database Persistence Strict ordering
Slide 59
Slide 59 text
@ @gamussa @confluentinc Distributed by Design
Slide 60
Slide 60 text
@ @gamussa @confluentinc Replication Distributed by Design
Slide 61
Slide 61 text
@ @gamussa @confluentinc Replication Fault Tolerance Distributed by Design
Slide 62
Slide 62 text
@ @gamussa @confluentinc Replication Fault Tolerance Partitioning Distributed by Design
Slide 63
Slide 63 text
@ @gamussa @confluentinc Replication Fault Tolerance Partitioning Scale Distributed by Design
Slide 64
Slide 64 text
@ @gamussa @confluentinc
Slide 65
Slide 65 text
@ @gamussa @confluentinc Partition Leadership and Replication Broker 1 Topic1 partition1 Broker 2 Broker 3 Broker 4 Topic1 partition1 Topic1 partition1 Leader Follower Topic1 partition2 Topic1 partition2 Topic1 partition2 Topic1 partition3 Topic1 partition4 Topic1 partition3 Topic1 partition3 Topic1 partition4 Topic1 partition4
Slide 66
Slide 66 text
@ @gamussa @confluentinc Partition Leadership and Replication - node failure Broker 1 Topic1 partition1 Broker 2 Broker 3 Broker 4 Topic1 partition1 Topic1 partition1 Leader Follower Topic1 partition2 Topic1 partition2 Topic1 partition2 Topic1 partition3 Topic1 partition4 Topic1 partition3 Topic1 partition3 Topic1 partition4 Topic1 partition4
Slide 67
Slide 67 text
@ @gamussa @confluentinc Streaming Platform 1. Pub/Sub 2. Store 3. Process
Slide 68
Slide 68 text
@ @gamussa @confluentinc What is Stream Processing? A machine for combining streams of events
Slide 69
Slide 69 text
@ @gamussa @confluentinc
Slide 70
Slide 70 text
@ @gamussa @confluentinc
Slide 71
Slide 71 text
@ @gamussa @confluentinc https://www.confluent.io/download/
Slide 72
Slide 72 text
@ @gamussa @confluentinc We are hiring! https://www.confluent.io/careers/
Slide 73
Slide 73 text
@ @gamussa @confluentinc One more thing…
Slide 74
Slide 74 text
@ @gamussa @confluentinc
Slide 75
Slide 75 text
@ @gamussa @confluentinc
Slide 76
Slide 76 text
@ @gamussa @confluentinc
Slide 77
Slide 77 text
@ @gamussa @confluentinc
Slide 78
Slide 78 text
@ @gamussa @confluentinc
Slide 79
Slide 79 text
@ @gamussa @confluentinc A Major New Paradigm
Slide 80
Slide 80 text
@ @gamussa @confluentinc Thanks! questions? @gamussa
[email protected]
We are hiring! https://www.confluent.io/careers/