Slide 19
Slide 19 text
Spark + XGBoost on Ray
import ray
import raydp
ray.init(address='auto')
spark = raydp.init_spark('Spark + XGBoost',
num_executors=2,
executor_cores=4,
executor_memory='8G')
df = spark.read.csv(...)
...
train_df, test_df = random_split(df, [0.9, 0.1])
train_dataset = RayMLDataset.from_spark(train_df, ...)
test_dataset = RayMLDataset.from_spark(test_df, ...)
from xgboost_ray import RayDMatrix, train, RayParams
dtrain = RayDMatrix(train_dataset, label='fare_amount')
dtest = RayDMatrix(test_dataset, label='fare_amount’)
…
bst = train(
config,
dtrain,
evals=[(dtest, "eval")],
evals_result=evals_result,
ray_params=RayParams(…)
num_boost_round=10)
Data Preprocessing Model Training
End-to-End Integrated Python Program
RayD
P
RayD
P