Slide 1

Slide 1 text

サマリー • 参加コンペ: – https://signate.jp/competitions/720 • 参加者: – チームは組んだが実働1人のみ(私) • 順位: – 14位(シルバー) • 備考: – 情報公開ポリシーがキビシイコンペ。 – モデルも分析結果も公開NGなので、言える範囲だけ。

Slide 2

Slide 2 text

データ、タスク概要 • データ・ルール特徴 – 似ている部材を見分けるコンペ – 未知のデータも認識する必要あり • 難しかったところ – タスクの理解 • シンプルなクラス分類に見えなくも ないが距離学習。 – 実装 • Signateが用意したサーバーで動 作するように記述するのが大変。

Slide 3

Slide 3 text

アプローチ • 距離学習(arcface)の適応の利用+FAISS – Arcfaceとは? • リンク:モダンな深層距離学習 (deep metric learning) 手法: SphereFace, CosFace, ArcFace - Qiita • 概要:顔認識等の個体識別問題を解決するための手段。 • 選定理由:以前参加した、クジライルカコンペで環境を立ち上げていたので。 – Happywhale - Whale and Dolphin Identification | Kaggle – FAISSとは? • リンク:GPU対応の類似検索(最近傍探索)ライブラリ Faissの紹介 part1 導入/チュートリアル – Rest Term (rest-term.com) • 概要:Facebookが開発している近似近傍探索のOSS • 学習パラメータなどは、データを用いて得られた知見に含まれるためごめんなさい。

Slide 4

Slide 4 text

所感 • 学習パラメータはもう少しいじってもよかったなーと。 – 業務でOptunaを立ち上げたので今後使ってみる。 • タスクの説明文が難しく、日本語の理解の重要性を再認識 • Trust CV!