Slide 1

Slide 1 text

Stochasticity

Slide 2

Slide 2 text

Today’s topics 1 Introduction 2 Geometric Growth 3 Logistic growth

Slide 3

Slide 3 text

Random Variables A random variable is a variable whose value can’t be predicted with certainty. Introduction Geometric Growth Logistic growth 3 / 17

Slide 4

Slide 4 text

Random Variables A random variable is a variable whose value can’t be predicted with certainty. Examples? • Weather • Our own behavior • Population size Introduction Geometric Growth Logistic growth 3 / 17

Slide 5

Slide 5 text

Probability distributions A random variable (X) can be described by a probability distribution. Introduction Geometric Growth Logistic growth 4 / 17

Slide 6

Slide 6 text

Probability distributions A random variable (X) can be described by a probability distribution. There are many types of probability distributions • Normal (or Gaussian) • Poisson • Binomial • Multinomial • etc. . . Introduction Geometric Growth Logistic growth 4 / 17

Slide 7

Slide 7 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X Introduction Geometric Growth Logistic growth 5 / 17

Slide 8

Slide 8 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q Introduction Geometric Growth Logistic growth 5 / 17

Slide 9

Slide 9 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 10

Slide 10 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 11

Slide 11 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 12

Slide 12 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q q q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 13

Slide 13 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q q q q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 14

Slide 14 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q q q q q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 15

Slide 15 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q q q q q q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 16

Slide 16 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q q q q q q q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 17

Slide 17 text

Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 = 1) −3 −2 −1 0 1 2 3 X q q q q q q q q q q Introduction Geometric Growth Logistic growth 5 / 17

Slide 18

Slide 18 text

Normal (Gaussian) Distribution −2 −1 0 1 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 X Relative probability µ=0, σ2=0.6 µ=0, σ2=0.4 µ=0, σ2=0.2 Introduction Geometric Growth Logistic growth 6 / 17

Slide 19

Slide 19 text

A purely stochastic model Nt ∼ Normal(µ = 50, σ2 = 1) qq q q q q q q q q q q q q q q q qqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q q q q q q q q q q q q q qq q q q q qq q q 0 20 40 60 80 100 48 49 50 51 52 Time Population size (N) Introduction Geometric Growth Logistic growth 7 / 17

Slide 20

Slide 20 text

Two important types of stochasticity Environmental stochasticity • Random variation in weather, habitat, etc. . . among years Introduction Geometric Growth Logistic growth 8 / 17

Slide 21

Slide 21 text

Two important types of stochasticity Environmental stochasticity • Random variation in weather, habitat, etc. . . among years Demographic stochasticity • Random variation in the number of births and deaths among years Introduction Geometric Growth Logistic growth 8 / 17

Slide 22

Slide 22 text

Geometric growth with environmental stochasticity Nt+1 = Nt + Nt r + Xt where Xt ∼ Normal(0, σ2 e ) Introduction Geometric Growth Logistic growth 9 / 17

Slide 23

Slide 23 text

Geometric growth with environmental stochasticity Nt+1 = Nt + Nt r + Xt where Xt ∼ Normal(0, σ2 e ) R code: r <- 0.1 sigma.e <- 10 for(t in 2:nYears) { X[t-1] <- rnorm(n=1, mean=0, sd=sigma.e) N[t] <- N[t-1] + N[t-1]*r + X[t-1] } Introduction Geometric Growth Logistic growth 9 / 17

Slide 24

Slide 24 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 25

Slide 25 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 26

Slide 26 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 27

Slide 27 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 28

Slide 28 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 29

Slide 29 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 30

Slide 30 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 31

Slide 31 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 32

Slide 32 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 33

Slide 33 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17

Slide 34

Slide 34 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 35

Slide 35 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 36

Slide 36 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 37

Slide 37 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 38

Slide 38 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 39

Slide 39 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 40

Slide 40 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 41

Slide 41 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 42

Slide 42 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 43

Slide 43 text

Example N0 = 100, r = 0.1, µ = 0, σ2 e = 10000 q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17

Slide 44

Slide 44 text

Geometric growth with demographic stochasticity Nt+1 = Nt + Nt rt Introduction Geometric Growth Logistic growth 12 / 17

Slide 45

Slide 45 text

Geometric growth with demographic stochasticity Nt+1 = Nt + Nt rt where rt ∼ Normal(¯ r, σ2 d ) Introduction Geometric Growth Logistic growth 12 / 17

Slide 46

Slide 46 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 47

Slide 47 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 48

Slide 48 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 49

Slide 49 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 50

Slide 50 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 51

Slide 51 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 52

Slide 52 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 53

Slide 53 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 54

Slide 54 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 55

Slide 55 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17

Slide 56

Slide 56 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 57

Slide 57 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 58

Slide 58 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 59

Slide 59 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 60

Slide 60 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 61

Slide 61 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 62

Slide 62 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 63

Slide 63 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 64

Slide 64 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 65

Slide 65 text

Example N0 = 100, ¯ r = 0.5, σ2 d = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17

Slide 66

Slide 66 text

Logistic growth with stochastic carrying capacity Nt+1 = Nt + Nt rmax (1 − Nt /Kt ) where Kt ∼ Normal( ¯ K, σ2 e ) Introduction Geometric Growth Logistic growth 15 / 17

Slide 67

Slide 67 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 68

Slide 68 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 69

Slide 69 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 70

Slide 70 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 71

Slide 71 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 72

Slide 72 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 73

Slide 73 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 74

Slide 74 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 75

Slide 75 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 76

Slide 76 text

Logistic example, rmax = 0.2, ¯ K = 100, σ2 e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17

Slide 77

Slide 77 text

Summary Purely deterministic models are too rigid Purely stochastic models don’t tell us much The goal is to develop a mechanistic model that represents our biological understanding while allowing for stochasticity Introduction Geometric Growth Logistic growth 17 / 17