Slide 1

Slide 1 text

The method of brackets (MoB) Integration by Differentiating The Method of Brackets (MoB) and Integrating by Differentiating (IbD) Method Lin Jiu Research Institute for Symbolic Computation Johannes Kepler University Dec. 9th 2016 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 2

Slide 2 text

The method of brackets (MoB) Integration by Differentiating Acknowledgement Joint Work with: V. H. Moll K. Kohl I. Gonzalez C. Vignat Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 3

Slide 3 text

The method of brackets (MoB) Integration by Differentiating Outlines 1 The method of brackets (MoB) Rules Ramanujan’s Master Theorem (RMT) Examples Recent result 2 Integration by Differentiating Formulas Recent proofs Connection Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 4

Slide 4 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 5

Slide 5 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 6

Slide 6 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 7

Slide 7 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 8

Slide 8 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 9

Slide 9 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules (P-Production; E-Evaluation) I = ∞ 0 f (x) dx P1: f (x) = ∞ n=0 anxαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β Bracket Series; P2: For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3: For each bracket series, we assign index=# of sums− # of brackets; E1: n φnf (n) αn + β = 1 |α| f (n∗) Γ (−n∗), where n∗ solves αn + β = 0; E2: n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1n1 + · · · + air nr + ci = f (n∗ 1 ,...,n∗ r ) r i=1 Γ(−n∗ i ) |det A| , (n∗ 1 , . . . , n∗ r ) solves    a11n1 + · · · + a1r nr + c1 = 0 . . . · · · ar1n1 + · · · + arr nr + cr = 0 ; E3: The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 10

Slide 10 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0

Slide 11

Slide 11 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0

Slide 12

Slide 12 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0

Slide 13

Slide 13 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0

Slide 14

Slide 14 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0

Slide 15

Slide 15 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 16

Slide 16 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 17

Slide 17 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 18

Slide 18 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 : For α < 0,(a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| ,, n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 19

Slide 19 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φn a (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 20

Slide 20 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 21

Slide 21 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 22

Slide 22 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 23

Slide 23 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 24

Slide 24 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 25

Slide 25 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 26

Slide 26 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 27

Slide 27 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 28

Slide 28 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Rule P2 Γ (−α) (a1 + · · · + ar )−α . = ∞ 0 x−α−1e−(a1+···+ar )x dx = ∞ 0 x−α−1e−a1x e−a2x · · · e−ar x dx = ∞ 0 x−α−1 r i=1   ∞ ni =0 φni (ax)ni   dx = ∞ 0 n1,...,nr φ1,...,r an1 1 · · · anr r xn1+···+nr −α−1dx = n1,...,nr φ1,...,r an1 1 · · · anr r −α + n1 + · · · + nr Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 29

Slide 29 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 30

Slide 30 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 31

Slide 31 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 32

Slide 32 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 33

Slide 33 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 34

Slide 34 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 35

Slide 35 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 36

Slide 36 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 37

Slide 37 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 38

Slide 38 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 39

Slide 39 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 40

Slide 40 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 41

Slide 41 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 42

Slide 42 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 43

Slide 43 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (I) Usual method: By the n-dim spherical coordinate that r = x2 1 + · · · + x2 m and                  x1 = r cos (φ1 ) , 0 ≤ φ1 ≤ π, x2 = r sin (φ2 ) cos (φ2 ) , 0 ≤ φ2 ≤ π, · · · · · · xn−2 = r sin (φ1 ) · · · sin (φm−3 ) cos (φm−2 ) , 0 ≤ φm−2 ≤ π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) cos (φm−1 ) , 0 ≤ φm−1 ≤ 2π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) sin (φm−1 ) , 0 ≤ r < ∞, we have dx1 · · · dxm = rm−1 sinm−2 (φ1 ) · · · sin (φm−2 ) drdφ1 · · · dφm−1. Thus, I = 2π m 2 ∞ 0 rm−1f r2 dr 1 Γ m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 44

Slide 44 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (I) Usual method: By the n-dim spherical coordinate that r = x2 1 + · · · + x2 m and                  x1 = r cos (φ1 ) , 0 ≤ φ1 ≤ π, x2 = r sin (φ2 ) cos (φ2 ) , 0 ≤ φ2 ≤ π, · · · · · · xn−2 = r sin (φ1 ) · · · sin (φm−3 ) cos (φm−2 ) , 0 ≤ φm−2 ≤ π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) cos (φm−1 ) , 0 ≤ φm−1 ≤ 2π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) sin (φm−1 ) , 0 ≤ r < ∞, we have dx1 · · · dxm = rm−1 sinm−2 (φ1 ) · · · sin (φm−2 ) drdφ1 · · · dφm−1. Thus, I = 2π m 2 ∞ 0 rm−1f r2 dr 1 Γ m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 45

Slide 45 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (I) Usual method: By the n-dim spherical coordinate that r = x2 1 + · · · + x2 m and                  x1 = r cos (φ1 ) , 0 ≤ φ1 ≤ π, x2 = r sin (φ2 ) cos (φ2 ) , 0 ≤ φ2 ≤ π, · · · · · · xn−2 = r sin (φ1 ) · · · sin (φm−3 ) cos (φm−2 ) , 0 ≤ φm−2 ≤ π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) cos (φm−1 ) , 0 ≤ φm−1 ≤ 2π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) sin (φm−1 ) , 0 ≤ r < ∞, we have dx1 · · · dxm = rm−1 sinm−2 (φ1 ) · · · sin (φm−2 ) drdφ1 · · · dφm−1. Thus, I = 2π m 2 ∞ 0 rm−1f r2 dr 1 Γ m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 46

Slide 46 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (I) Usual method: By the n-dim spherical coordinate that r = x2 1 + · · · + x2 m and                  x1 = r cos (φ1 ) , 0 ≤ φ1 ≤ π, x2 = r sin (φ2 ) cos (φ2 ) , 0 ≤ φ2 ≤ π, · · · · · · xn−2 = r sin (φ1 ) · · · sin (φm−3 ) cos (φm−2 ) , 0 ≤ φm−2 ≤ π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) cos (φm−1 ) , 0 ≤ φm−1 ≤ 2π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) sin (φm−1 ) , 0 ≤ r < ∞, we have dx1 · · · dxm = rm−1 sinm−2 (φ1 ) · · · sin (φm−2 ) drdφ1 · · · dφm−1. Thus, I = 2π m 2 ∞ 0 rm−1f r2 dr 1 Γ m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 47

Slide 47 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (II) The method of brackets: Suppose f (t) = ∞ l=0 φl a (l) tl , then, ∞ 0 rm−1f r2 dr = l φl a (l) 2l + m = l φl a (l) 2l + m = 1 2 a − m 2 Γ m 2 . So it suffices to show that I = 2π m 2 1 2 a − m 2 Γ −m 2 + 1 (−1)− m 2 Γ m 2 1 Γ m 2 = π m 2 a − m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 48

Slide 48 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (II) The method of brackets: Suppose f (t) = ∞ l=0 φl a (l) tl , then, ∞ 0 rm−1f r2 dr = l φl a (l) 2l + m = l φl a (l) 2l + m = 1 2 a − m 2 Γ m 2 . So it suffices to show that I = 2π m 2 1 2 a − m 2 Γ −m 2 + 1 (−1)− m 2 Γ m 2 1 Γ m 2 = π m 2 a − m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 49

Slide 49 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim Direct computation shows: I = 2m Rm + ∞ l=0 φl a (l) x2 1 + · · · + x2 m l dx1 · · · dxm = 2m Rm + ∞ l=0 φl a (l) n1,...,nm n1+···+nm=l l n1, · · · , nm x2n1 1 · · · x2nm m dx1 · · · dxm = 2m l=n1+···+nm φl a (l) n1,...,nm φ1,...,m l n1, · · · , nm 1 φ1,...,m m j=1 2nj + 1 = AC... = π m 2 a − m 2 , as desired. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 50

Slide 50 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim Direct computation shows: I = 2m Rm + ∞ l=0 φl a (l) x2 1 + · · · + x2 m l dx1 · · · dxm = 2m Rm + ∞ l=0 φl a (l) n1,...,nm n1+···+nm=l l n1, · · · , nm x2n1 1 · · · x2nm m dx1 · · · dxm = 2m l=n1+···+nm φl a (l) n1,...,nm φ1,...,m l n1, · · · , nm 1 φ1,...,m m j=1 2nj + 1 = AC... = π m 2 a − m 2 , as desired. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 51

Slide 51 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim Direct computation shows: I = 2m Rm + ∞ l=0 φl a (l) x2 1 + · · · + x2 m l dx1 · · · dxm = 2m Rm + ∞ l=0 φl a (l) n1,...,nm n1+···+nm=l l n1, · · · , nm x2n1 1 · · · x2nm m dx1 · · · dxm = 2m l=n1+···+nm φl a (l) n1,...,nm φ1,...,m l n1, · · · , nm 1 φ1,...,m m j=1 2nj + 1 = AC... = π m 2 a − m 2 , as desired. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 52

Slide 52 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim I = Rm + xp1−1 1 · · · xpm−1 m dx1 · · · dxm (r0 + r1 x1 + · · · + rm xm )s = Γ (p1 ) · · · Γ (pm ) Γ (s − p1 − p2 − · · · − pn ) rp1 1 · · · rpm m rs−p1−···−pm 0 Γ (s) . (r0 + r1x1 + · · · + rmxm)−s = n0,n1,...,nm φ0,1,...,mrn0 0 rn1 1 xn1 1 · · · rnm m xnm m s + n0 + · · · + nm Γ (s) I = 1 Γ (s) n0,n1,...,nm φ0,1,...,mrn0 0 · · · rnm m s + n0 + · · · + nm m j=1 nm + pm .   1 1 1 · · · 1 0 1 0 · · · 0 · · · · · · · · · · · · · · · 0 0 0 0 1     n0 n1 · · · nm   +   s p1 · · · pm   =     0 0 0 · · · 0     , det A = 1, n∗ j = −pj , ∀j = 1, . . . , m and n∗ 0 = p1 + · · · + pm − s. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 53

Slide 53 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Multi-dim I = Rm + xp1−1 1 · · · xpm−1 m dx1 · · · dxm (r0 + r1 x1 + · · · + rm xm )s = Γ (p1 ) · · · Γ (pm ) Γ (s − p1 − p2 − · · · − pn ) rp1 1 · · · rpm m rs−p1−···−pm 0 Γ (s) . (r0 + r1x1 + · · · + rmxm)−s = n0,n1,...,nm φ0,1,...,mrn0 0 rn1 1 xn1 1 · · · rnm m xnm m s + n0 + · · · + nm Γ (s) I = 1 Γ (s) n0,n1,...,nm φ0,1,...,mrn0 0 · · · rnm m s + n0 + · · · + nm m j=1 nm + pm .   1 1 1 · · · 1 0 1 0 · · · 0 · · · · · · · · · · · · · · · 0 0 0 0 1     n0 n1 · · · nm   +   s p1 · · · pm   =     0 0 0 · · · 0     , det A = 1, n∗ j = −pj , ∀j = 1, . . . , m and n∗ 0 = p1 + · · · + pm − s. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 54

Slide 54 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Null/Divergent Series K0 (x) = ∞ 0 cos(tx)dt √ 1+t2 . K0 (x) = 1 2 n φnΓ (−n) x2n 4n and K0 (x) = n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 M (K0) (s) = ∞ 0 xs−1K0 (x) dx = 2s−2Γ s 2 2 ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 dx = n φn Γ n + 1 2 2 4n Γ (−n) s − 2n − 1 = 2s−2Γ s 2 2 , ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 2 n φnΓ (−n) x2n 4n dx = 1 2 n φn Γ (−n) 4n 2n + s = 2s−2Γ s 2 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 55

Slide 55 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Null/Divergent Series K0 (x) = ∞ 0 cos(tx)dt √ 1+t2 . K0 (x) = 1 2 n φnΓ (−n) x2n 4n and K0 (x) = n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 M (K0) (s) = ∞ 0 xs−1K0 (x) dx = 2s−2Γ s 2 2 ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 dx = n φn Γ n + 1 2 2 4n Γ (−n) s − 2n − 1 = 2s−2Γ s 2 2 , ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 2 n φnΓ (−n) x2n 4n dx = 1 2 n φn Γ (−n) 4n 2n + s = 2s−2Γ s 2 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 56

Slide 56 text

The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s Master Theorem (RMT) Examples Recent result Null/Divergent Series K0 (x) = ∞ 0 cos(tx)dt √ 1+t2 . K0 (x) = 1 2 n φnΓ (−n) x2n 4n and K0 (x) = n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 M (K0) (s) = ∞ 0 xs−1K0 (x) dx = 2s−2Γ s 2 2 ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 dx = n φn Γ n + 1 2 2 4n Γ (−n) s − 2n − 1 = 2s−2Γ s 2 2 , ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 2 n φnΓ (−n) x2n 4n dx = 1 2 n φn Γ (−n) 4n 2n + s = 2s−2Γ s 2 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 57

Slide 57 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection DEF A. Kempf et al. study Dirac-delta function to obtain the following formulas: b a f (x) dx = lim ε→0 f (∂ε) eεb − eεa ε , ∞ −∞ f (x) dx = lim ε→0 2πf (−ι∂ε) δ (ε) = 2πδ (ι∂ε) f (ε) , ∞ 0 f (x) dx = lim ε→0 f (−∂ε) 1 ε , 0 −∞ f (x) dx = lim ε→0 f (∂ε) 1 ε , ∞ −∞ f (x) dx = lim ε→0 [f (−∂ε) + f (∂ε)] 1 ε , where ∂ε denotes the derivative with respect to ε. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 58

Slide 58 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection DEF A. Kempf et al. study Dirac-delta function to obtain the following formulas: b a f (x) dx = lim ε→0 f (∂ε) eεb − eεa ε , ∞ −∞ f (x) dx = lim ε→0 2πf (−ι∂ε) δ (ε) = 2πδ (ι∂ε) f (ε) , ∞ 0 f (x) dx = lim ε→0 f (−∂ε) 1 ε , 0 −∞ f (x) dx = lim ε→0 f (∂ε) 1 ε , ∞ −∞ f (x) dx = lim ε→0 [f (−∂ε) + f (∂ε)] 1 ε , where ∂ε denotes the derivative with respect to ε. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 59

Slide 59 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 60

Slide 60 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 61

Slide 61 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 62

Slide 62 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 63

Slide 63 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 64

Slide 64 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 65

Slide 65 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 66

Slide 66 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Remark I = ∞ 0 1 x n φn Γ (n + 1) Γ (2n + 2) x2n+1dx = n φn Γ (n + 1) Γ (2n + 2) 2n + 1 = 1 2 · Γ −1 2 + 1 Γ 2 −1 2 + 2 Γ 1 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 67

Slide 67 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Remark I = ∞ 0 1 x n φn Γ (n + 1) Γ (2n + 2) x2n+1dx = n φn Γ (n + 1) Γ (2n + 2) 2n + 1 = 1 2 · Γ −1 2 + 1 Γ 2 −1 2 + 2 Γ 1 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 68

Slide 68 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 69

Slide 69 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 70

Slide 70 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 71

Slide 71 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 72

Slide 72 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 73

Slide 73 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Formal Connection f (x) = ∞ n=0 anxαn+β−1 ⇒ ∞ 0 f (x) dx = lim ε→0 ∞ 0 e−εx f (x) dx. lim ε→0 ∞ 0 e−εx f (x) dx = lim ε→0 ∞ 0 e−εx ∞ n=0 anxαn+β−1 dx = lim ε→0 ∞ n=0 an ∞ 0 e−εx xαn+β−1dx = lim ε→0 ∞ n=0 an ∞ 0 (−∂ε)αn+β−1 ◦ e−εx dx = lim ε→0 ∞ n=0 an (−∂ε)αn+β−1 ◦ ∞ 0 e−εx dx = lim ε→0 f (−∂ε) ◦ 1 ε . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 74

Slide 74 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Formal Connection f (x) = ∞ n=0 anxαn+β−1 ⇒ ∞ 0 f (x) dx = lim ε→0 ∞ 0 e−εx f (x) dx. lim ε→0 ∞ 0 e−εx f (x) dx = lim ε→0 ∞ 0 e−εx ∞ n=0 anxαn+β−1 dx = lim ε→0 ∞ n=0 an ∞ 0 e−εx xαn+β−1dx = lim ε→0 ∞ n=0 an ∞ 0 (−∂ε)αn+β−1 ◦ e−εx dx = lim ε→0 ∞ n=0 an (−∂ε)αn+β−1 ◦ ∞ 0 e−εx dx = lim ε→0 f (−∂ε) ◦ 1 ε . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 75

Slide 75 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Formal Connection f (x) = ∞ n=0 anxαn+β−1 ⇒ ∞ 0 f (x) dx = lim ε→0 ∞ 0 e−εx f (x) dx. lim ε→0 ∞ 0 e−εx f (x) dx = lim ε→0 ∞ 0 e−εx ∞ n=0 anxαn+β−1 dx = lim ε→0 ∞ n=0 an ∞ 0 e−εx xαn+β−1dx = lim ε→0 ∞ n=0 an ∞ 0 (−∂ε)αn+β−1 ◦ e−εx dx = lim ε→0 ∞ n=0 an (−∂ε)αn+β−1 ◦ ∞ 0 e−εx dx = lim ε→0 f (−∂ε) ◦ 1 ε . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 76

Slide 76 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Formal Connection Recall P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx = n an αn + β . Formally, a := ∞ 0 xa−1dx. and a ε := ∞ 0 xa−1e−εx dx ⇒ lim ε→0 a ε = a . Therefore n an αn + β = lim ε→0 n an αn + β ε = lim ε→0 n an ∞ 0 xαn+β−1e−εx dx = lim ε→0 ∞ 0 e−εx f (x) dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 77

Slide 77 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Formal Connection Recall P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx = n an αn + β . Formally, a := ∞ 0 xa−1dx. and a ε := ∞ 0 xa−1e−εx dx ⇒ lim ε→0 a ε = a . Therefore n an αn + β = lim ε→0 n an αn + β ε = lim ε→0 n an ∞ 0 xαn+β−1e−εx dx = lim ε→0 ∞ 0 e−εx f (x) dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 78

Slide 78 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Formal Connection Recall P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx = n an αn + β . Formally, a := ∞ 0 xa−1dx. and a ε := ∞ 0 xa−1e−εx dx ⇒ lim ε→0 a ε = a . Therefore n an αn + β = lim ε→0 n an αn + β ε = lim ε→0 n an ∞ 0 xαn+β−1e−εx dx = lim ε→0 ∞ 0 e−εx f (x) dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 79

Slide 79 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Formal Connection Recall P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx = n an αn + β . Formally, a := ∞ 0 xa−1dx. and a ε := ∞ 0 xa−1e−εx dx ⇒ lim ε→0 a ε = a . Therefore n an αn + β = lim ε→0 n an αn + β ε = lim ε→0 n an ∞ 0 xαn+β−1e−εx dx = lim ε→0 ∞ 0 e−εx f (x) dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 80

Slide 80 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 81

Slide 81 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 82

Slide 82 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 83

Slide 83 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 84

Slide 84 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 85

Slide 85 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection References B. C. Berndt, Ramanujan’s Notebooks Part I, Springer-Verlag, 1991. K. Boyadzhiev, V. H. Moll. The integrals in Gradshteyn and Ryzhik. Part 21: hyperbolic functions. Scientia. 22 (2013), 109–127, 2013. I. Gonzalez, K. Kohl, and V. H. Moll. Evaluation of entries in Gradshteyn and Ryzhik employing the method of brackets. Scientia, 25 (2014), 65–84. I. Gonzalez and V. H. Moll. Definite integrals by the method of brackets. Part 1. Adv. Appl. Math., 45 (2010), 50–73. I. Gonzalez and I. Schmidt. Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation. Nuclear Phys. B, 769 (2017), 124–173. I. Gonzalez and I. Schmidt. Modular application of an integration by fractional expansion (IBFE) method to multiloop Feynman diagrams. Phys. Rev. D, 78 (2008), 086003. I. G. Halliday and R. M. Ricotta. Negative dimensional integrals. I. Feynman graphs. Phys. Lett. B, 193 (1987), 241–246. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products, Academic Press, 2015. G. H. Hardy. Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Chelsea Publishing Company, 1987. K. Kohl. Algorithmic Methods for Definite Integration. PhD thesis, Tulane University, 2011. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 86

Slide 86 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection References B. C. Berndt, Ramanujan’s Notebooks Part I, Springer-Verlag, 1991. K. Boyadzhiev, V. H. Moll. The integrals in Gradshteyn and Ryzhik. Part 21: hyperbolic functions. Scientia. 22 (2013), 109–127, 2013. I. Gonzalez, K. Kohl, and V. H. Moll. Evaluation of entries in Gradshteyn and Ryzhik employing the method of brackets. Scientia, 25 (2014), 65–84. I. Gonzalez and V. H. Moll. Definite integrals by the method of brackets. Part 1. Adv. Appl. Math., 45 (2010), 50–73. I. Gonzalez and I. Schmidt. Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation. Nuclear Phys. B, 769 (2017), 124–173. I. Gonzalez and I. Schmidt. Modular application of an integration by fractional expansion (IBFE) method to multiloop Feynman diagrams. Phys. Rev. D, 78 (2008), 086003. I. G. Halliday and R. M. Ricotta. Negative dimensional integrals. I. Feynman graphs. Phys. Lett. B, 193 (1987), 241–246. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products, Academic Press, 2015. G. H. Hardy. Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Chelsea Publishing Company, 1987. K. Kohl. Algorithmic Methods for Definite Integration. PhD thesis, Tulane University, 2011. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 87

Slide 87 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection References A. Kempf, D. M. Jackson, and A. H. Morales, New Dirac Delta Function Based Methods with Applications to Perturbative Expansions in Quantum Field Theory, Journal of Physics A: Mathematical and Theoretical 47 (41): 415-204, 2014 A. Kempf, D. M. Jackson, and A. H. Morales, How to (Path-) Integrate by Differentiating, preprint, arXiv:math/1507.04348, 2015. D. Jia, E. Tang and A. Kempf, Integration by differentiation: new proofs, methods and examples, preprint, https://arxiv.org/abs/1610.09702, 2016. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 88

Slide 88 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection References A. Kempf, D. M. Jackson, and A. H. Morales, New Dirac Delta Function Based Methods with Applications to Perturbative Expansions in Quantum Field Theory, Journal of Physics A: Mathematical and Theoretical 47 (41): 415-204, 2014 A. Kempf, D. M. Jackson, and A. H. Morales, How to (Path-) Integrate by Differentiating, preprint, arXiv:math/1507.04348, 2015. D. Jia, E. Tang and A. Kempf, Integration by differentiation: new proofs, methods and examples, preprint, https://arxiv.org/abs/1610.09702, 2016. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin

Slide 89

Slide 89 text

The method of brackets (MoB) Integration by Differentiating Formulas Recent proofs Connection End Thank you! Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin