Slide 1

Slide 1 text

Build Smart Cross-Platform Apps Flutter & ML Kit SivamuthuKumar Byteconf Flutter, August 14, 2020 Build Smart Cross-Platform Apps Flutter & ML Kit SivamuthuKumar Byteconf Flutter, August 14, 2020

Slide 2

Slide 2 text

Agenda • Flutter & Machine Learning • MLKit APIs • AutoML - Custom Model / TFLite • Flutter Integration • Demo

Slide 3

Slide 3 text

Sivamuthu Kumar Software Architect, Computer Enterprise Inc, Cloud, Mobile, IoT, ML Orlando, FL ksivamuthu ksivamuthu ksivamuthu

Slide 4

Slide 4 text

Flutter

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

Machine Learning Google’s AI Building Blocks

Slide 8

Slide 8 text

AI building blocks make it easy to add the human like capabilities of sight, language, and conversation to your applications.

Slide 9

Slide 9 text

Machine Learning APIs Pre trained models ML Engine / Deep Learning VMs Custom Models Cloud AutoML Application Developers Data scientists & Practitioners @ksivamuthu Spectrum of AI Building Blocks

Slide 10

Slide 10 text

Machine Learning APIs

Slide 11

Slide 11 text

Cloud AutoML

Slide 12

Slide 12 text

TensorFlow TPUs Google Machine Perception Pre-trained ML APIs and AutoML Energy Auto Finance Entertainment Media Manufacturing / Agriculture Retail @ksivamuthu

Slide 13

Slide 13 text

MLKit Machine Learning for Mobile Developers

Slide 14

Slide 14 text

MLKit • Optimized for Mobile – iOS / Android SDK, Flutter • Easy to use APIs – Pretrained and Custom models • On-device and Google Cloud AI Inference APIs • Fast inference time • Privacy of your data – On-Device ML Support

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

Initialize the Detectors

Slide 17

Slide 17 text

Get the image Detect / Process Image

Slide 18

Slide 18 text

Extract the Labels

Slide 19

Slide 19 text

Demo Flutter + MLKit APIs

Slide 20

Slide 20 text

Boat Classification

Slide 21

Slide 21 text

Ensure Mask

Slide 22

Slide 22 text

Ensure Mask • Preparing Dataset • Training • Evaluation • Exporting model to run in Edge/Device • Running inference in device

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

Reference • Demo Repo - https://github.com/ksivamuthu/flutter_mlkit_demo • MLKit - https://developers.google.com/ml-kit • Firebase ML Vision Plugin - https://pub.dev/packages/firebase_ml_vision • AutoML / Coral Edge Demo - https://www.youtube.com/watch?v=sZBN04tprPs

Slide 26

Slide 26 text

Thank you Sivamuthu Kumar ksivamuthu