Slide 1

Slide 1 text

関西大学総合情報学部 浅野 晃 応用数学(解析) 2024年度春学期 第3部・微分方程式に関する話題 / 第10回 生存時間分布と半減期

Slide 2

Slide 2 text

今日は,「寿命」を扱う微分方程式🤔🤔

Slide 3

Slide 3 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら

Slide 4

Slide 4 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」

Slide 5

Slide 5 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという

Slide 6

Slide 6 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという 寿命がいくらである確率がどのくらいであるかを 表すのが[確率分布]

Slide 7

Slide 7 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t)

Slide 8

Slide 8 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率

Slide 9

Slide 9 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率

Slide 10

Slide 10 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率

Slide 11

Slide 11 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率

Slide 12

Slide 12 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり

Slide 13

Slide 13 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり

Slide 14

Slide 14 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間

Slide 15

Slide 15 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合

Slide 16

Slide 16 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合 [ハザード関数]

Slide 17

Slide 17 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して   [累積分布関数] F(t) = P(T ≤ t)

Slide 18

Slide 18 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して   [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率

Slide 19

Slide 19 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して   [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]

Slide 20

Slide 20 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 確率変数 T に対して   [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]

Slide 21

Slide 21 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数 T に対して   [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]

Slide 22

Slide 22 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数 T に対して   [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数] 生存関数は,ある時間がたったとき,まだ生きている確率

Slide 23

Slide 23 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t)

Slide 24

Slide 24 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt

Slide 25

Slide 25 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t)

Slide 26

Slide 26 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt

Slide 27

Slide 27 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′ (t)

Slide 28

Slide 28 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′ (t) すなわち f(t) = F′ (t)

Slide 29

Slide 29 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 30

Slide 30 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 31

Slide 31 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 32

Slide 32 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 33

Slide 33 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 34

Slide 34 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 35

Slide 35 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 36

Slide 36 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 37

Slide 37 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 38

Slide 38 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 39

Slide 39 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 40

Slide 40 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 41

Slide 41 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 42

Slide 42 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ 寿命 T ハザード関数 l(t) 累積分布関数 F(t)

Slide 43

Slide 43 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)

Slide 44

Slide 44 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)

Slide 45

Slide 45 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)

Slide 46

Slide 46 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t)

Slide 47

Slide 47 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t)

Slide 48

Slide 48 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t)

Slide 49

Slide 49 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t)

Slide 50

Slide 50 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)

Slide 51

Slide 51 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)

Slide 52

Slide 52 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)

Slide 53

Slide 53 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t)

Slide 54

Slide 54 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t)

Slide 55

Slide 55 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t) 以上から l(t) = − S′(t) S(t) という微分方程式が得られる

Slide 56

Slide 56 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t))

Slide 57

Slide 57 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分)

Slide 58

Slide 58 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C

Slide 59

Slide 59 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1

Slide 60

Slide 60 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから

Slide 61

Slide 61 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0

Slide 62

Slide 62 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0

Slide 63

Slide 63 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0

Slide 64

Slide 64 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1

Slide 65

Slide 65 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0

Slide 66

Slide 66 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0

Slide 67

Slide 67 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0

Slide 68

Slide 68 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0 ハザード関数と生存関数の関係

Slide 69

Slide 69 text

ワイブル分布と指数分布📈📈

Slide 70

Slide 70 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する

Slide 71

Slide 71 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入

Slide 72

Slide 72 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p)

Slide 73

Slide 73 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p)

Slide 74

Slide 74 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係

Slide 75

Slide 75 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p)

Slide 76

Slide 76 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 この形の累積分布関数をもつ確率分布を[ワイブル分布]とよぶ ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p)

Slide 77

Slide 77 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1

Slide 78

Slide 78 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる

Slide 79

Slide 79 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる

Slide 80

Slide 80 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは,

Slide 81

Slide 81 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正

Slide 82

Slide 82 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正

Slide 83

Slide 83 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる

Slide 84

Slide 84 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる

Slide 85

Slide 85 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障]

Slide 86

Slide 86 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは,

Slide 87

Slide 87 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負

Slide 88

Slide 88 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる

Slide 89

Slide 89 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる

Slide 90

Slide 90 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる [初期故障]

Slide 91

Slide 91 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 13 t F(t) F(t) = 1 – e–t4 F(t) = 1 – e–t2 経過時間 累積分布関数 (ある時刻までに死亡・  故障したものの割合) p = 2 の場合と p = 4 の場合 どちらも摩耗故障(時間につれて故障しやすくなる) p = 4 のほうが,急激に故障が増える

Slide 92

Slide 92 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する

Slide 93

Slide 93 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =     exp (−(λt)p)     より 1 S(t) = exp ((λt)p)

Slide 94

Slide 94 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =     exp (−(λt)p)     より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる

Slide 95

Slide 95 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =     exp (−(λt)p)     より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ)

Slide 96

Slide 96 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =     exp (−(λt)p)     より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y

Slide 97

Slide 97 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =     exp (−(λt)p)     より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X

Slide 98

Slide 98 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =     exp (−(λt)p)     より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X Y = p(X + log λ)  

Slide 99

Slide 99 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =     exp (−(λt)p)     より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X Y = p(X + log λ)   時刻を上の X ,その時刻での生存割合を上の Y に変換してプロット →並びを近似する直線の傾きが p

Slide 100

Slide 100 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1

Slide 101

Slide 101 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 ハザード関数は l(t) = λ

Slide 102

Slide 102 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 ハザード関数は l(t) = λ

Slide 103

Slide 103 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ

Slide 104

Slide 104 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は

Slide 105

Slide 105 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は

Slide 106

Slide 106 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する

Slide 107

Slide 107 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する ハザード関数が一定で,指数分布にしたがう

Slide 108

Slide 108 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定

Slide 109

Slide 109 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする t t′

Slide 110

Slide 110 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t)

Slide 111

Slide 111 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt

Slide 112

Slide 112 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt

Slide 113

Slide 113 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt

Slide 114

Slide 114 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt 対数をとる

Slide 115

Slide 115 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる

Slide 116

Slide 116 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる

Slide 117

Slide 117 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる t によらず一定

Slide 118

Slide 118 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる t によらず一定 [半減期]

Slide 119

Slide 119 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は?

Slide 120

Slide 120 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t

Slide 121

Slide 121 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t 指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ

Slide 122

Slide 122 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t 指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ 半減期は2年なので λ = log 2 2

Slide 123

Slide 123 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t 指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ 半減期は2年なので λ = log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1)

Slide 124

Slide 124 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ = log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1)

Slide 125

Slide 125 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ = log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293

Slide 126

Slide 126 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ = log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293 1個の原子が1年以内に崩壊する確率 0.293

Slide 127

Slide 127 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ = log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293 1個の原子が1年以内に崩壊する確率 0.293 原子がたくさんあれば,そのうち崩壊する原子の割合が 29.3%

Slide 128

Slide 128 text

19 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 19 集団中の個体の数が 死亡・故障によって減少して行く この現象を表す 微分方程式 解に仮定を持ち込むことで, ワイブル分布,指数分布といった 「死亡・故障による現象のモデル」が導かれる