Slide 1

Slide 1 text

Topological Data Analysis Leland McInnes CMS Winter Meeting 2019

Slide 2

Slide 2 text

Leland McInnes Researcher at the Tutte Institute for Mathematics and Computing Maintainer for many machine learning packages umap-learn, hdbscan, pynndescent, enstop Scikit-learn and Scikit-TDA contributor @leland_mcinnes [email protected]

Slide 3

Slide 3 text

I want to empower users to explore their data

Slide 4

Slide 4 text

Data Analysis

Slide 5

Slide 5 text

Name Birthdate Height Weight Alice 1985-10-12 178 55 Bob 1991-01-02 189 85 Carmen 1978-05-18 170 54 David 1996-11-30 175 72 Eva 1975-09-21 159 45 Frank 1999-06-28 192 80 Gertrude 1943-10-19 181 63 Harold 1982-11-08 176 65

Slide 6

Slide 6 text

Name Birthdate Height Weight Mohsen March 21st 1985 5’8” 55 kg Type Name Here 12/31/1991 almost 6 feet 178 Rahul Pushpakumara 30-05-2001 170 cm ??? Luuk Sander van der Berg 02/07/05 1.75 metres N/A Yumiko❤✨ Feb 31 1978 short Akwesi Olatunji 1970-01-01 5 foot 11 80 王秀英 5’9” 130 Robert Garcia-Smith Jr. January I think? 176 65

Slide 7

Slide 7 text

What questions do you want answered?

Slide 8

Slide 8 text

What questions should you be asking?

Slide 9

Slide 9 text

Look at your data!

Slide 10

Slide 10 text

Name Birthdate Height Weight Mohsen March 21st 1985 5’8” 55 kg Type Name Here 12/31/1991 almost 6 feet 178 Rahul Pushpakumara 30-05-2001 170 cm ??? Luuk Sander van der Berg 02/07/05 1.75 metres N/A Yumiko❤✨ Feb 31 1978 short Akwesi Olatunji 1970-01-01 5 foot 11 80 王秀英 5’9” 130 Robert Garcia-Smith Jr. January I think? 176 65

Slide 11

Slide 11 text

Petal width Petal length Sepal width Sepal length Species 5.1 3.5 1.4 0.2 Setosa 4.9 3 1.4 0.2 Setosa 4.7 3.2 1.3 0.2 Setosa 4.6 3.1 1.5 0.2 Setosa 5 3.6 1.4 0.2 Setosa 5.4 3.9 1.7 0.4 Setosa 4.6 3.4 1.4 0.3 Setosa 5 3.4 1.5 0.2 Setosa 4.4 2.9 1.4 0.2 Setosa 4.9 3.1 1.5 0.1 Setosa 5.4 3.7 1.5 0.2 Setosa 4.8 3.4 1.6 0.2 Setosa 4.8 3 1.4 0.1 Setosa

Slide 12

Slide 12 text

Petal width Petal length Sepal width Sepal length Species 5.1 3.5 1.4 0.2 Setosa 4.9 3 1.4 0.2 Setosa 4.7 3.2 1.3 0.2 Setosa 4.6 3.1 1.5 0.2 Setosa 5 3.6 1.4 0.2 Setosa 5.4 3.9 1.7 0.4 Setosa 4.6 3.4 1.4 0.3 Setosa 5 3.4 1.5 0.2 Setosa 4.4 2.9 1.4 0.2 Setosa 4.9 3.1 1.5 0.1 Setosa 5.4 3.7 1.5 0.2 Setosa 4.8 3.4 1.6 0.2 Setosa 4.8 3 1.4 0.1 Setosa 4.3 3 1.1 0.1 Setosa 5.8 4 1.2 0.2 Setosa 5.7 4.4 1.5 0.4 Setosa 5.4 3.9 1.3 0.4 Setosa 5.1 3.5 1.4 0.3 Setosa 5.7 3.8 1.7 0.3 Setosa 5.1 3.8 1.5 0.3 Setosa 5.4 3.4 1.7 0.2 Setosa 5.1 3.7 1.5 0.4 Setosa 4.6 3.6 1 0.2 Setosa 5.1 3.3 1.7 0.5 Setosa 4.8 3.4 1.9 0.2 Setosa 5 3 1.6 0.2 Setosa 5 3.4 1.6 0.4 Setosa 5.2 3.5 1.5 0.2 Setosa 5.2 3.4 1.4 0.2 Setosa 4.7 3.2 1.6 0.2 Setosa 4.8 3.1 1.6 0.2 Setosa 5.4 3.4 1.5 0.4 Setosa 5.2 4.1 1.5 0.1 Setosa 5.5 4.2 1.4 0.2 Setosa 4.9 3.1 1.5 0.2 Setosa 5 3.2 1.2 0.2 Setosa 5.5 3.5 1.3 0.2 Setosa Petal width Petal length Sepal width Sepal length Species 4.9 3.6 1.4 0.1 Setosa 4.4 3 1.3 0.2 Setosa 5.1 3.4 1.5 0.2 Setosa 5 3.5 1.3 0.3 Setosa 4.5 2.3 1.3 0.3 Setosa 4.4 3.2 1.3 0.2 Setosa 5 3.5 1.6 0.6 Setosa 5.1 3.8 1.9 0.4 Setosa 4.8 3 1.4 0.3 Setosa 5.1 3.8 1.6 0.2 Setosa 4.6 3.2 1.4 0.2 Setosa 5.3 3.7 1.5 0.2 Setosa 5 3.3 1.4 0.2 Setosa 7 3.2 4.7 1.4 Versicolor 6.4 3.2 4.5 1.5 Versicolor 6.9 3.1 4.9 1.5 Versicolor 5.5 2.3 4 1.3 Versicolor 6.5 2.8 4.6 1.5 Versicolor 5.7 2.8 4.5 1.3 Versicolor 6.3 3.3 4.7 1.6 Versicolor 4.9 2.4 3.3 1 Versicolor 6.6 2.9 4.6 1.3 Versicolor 5.2 2.7 3.9 1.4 Versicolor 5 2 3.5 1 Versicolor 5.9 3 4.2 1.5 Versicolor 6 2.2 4 1 Versicolor 6.1 2.9 4.7 1.4 Versicolor 5.6 2.9 3.6 1.3 Versicolor 6.7 3.1 4.4 1.4 Versicolor 5.6 3 4.5 1.5 Versicolor 5.8 2.7 4.1 1 Versicolor 6.2 2.2 4.5 1.5 Versicolor 5.6 2.5 3.9 1.1 Versicolor 5.9 3.2 4.8 1.8 Versicolor 6.1 2.8 4 1.3 Versicolor 6.3 2.5 4.9 1.5 Versicolor 6.1 2.8 4.7 1.2 Versicolor Petal width Petal length Sepal width Sepal length Species 6.4 2.9 4.3 1.3 Versicolor 6.6 3 4.4 1.4 Versicolor 6.8 2.8 4.8 1.4 Versicolor 6.7 3 5 1.7 Versicolor 6 2.9 4.5 1.5 Versicolor 5.7 2.6 3.5 1 Versicolor 5.5 2.4 3.8 1.1 Versicolor 5.5 2.4 3.7 1 Versicolor 5.8 2.7 3.9 1.2 Versicolor 6 2.7 5.1 1.6 Versicolor 5.4 3 4.5 1.5 Versicolor 6 3.4 4.5 1.6 Versicolor 6.7 3.1 4.7 1.5 Versicolor 6.3 2.3 4.4 1.3 Versicolor 5.6 3 4.1 1.3 Versicolor 5.5 2.5 4 1.3 Versicolor 5.5 2.6 4.4 1.2 Versicolor 6.1 3 4.6 1.4 Versicolor 5.8 2.6 4 1.2 Versicolor 5 2.3 3.3 1 Versicolor 5.6 2.7 4.2 1.3 Versicolor 5.7 3 4.2 1.2 Versicolor 5.7 2.9 4.2 1.3 Versicolor 6.2 2.9 4.3 1.3 Versicolor 5.1 2.5 3 1.1 Versicolor 5.7 2.8 4.1 1.3 Versicolor 6.3 3.3 6 2.5 Virginica 5.8 2.7 5.1 1.9 Virginica 7.1 3 5.9 2.1 Virginica 6.3 2.9 5.6 1.8 Virginica 6.5 3 5.8 2.2 Virginica 7.6 3 6.6 2.1 Virginica 4.9 2.5 4.5 1.7 Virginica 7.3 2.9 6.3 1.8 Virginica 6.7 2.5 5.8 1.8 Virginica 7.2 3.6 6.1 2.5 Virginica 6.5 3.2 5.1 2 Virginica Petal width Petal length Sepal width Sepal length Species 6.4 2.7 5.3 1.9 Virginica 6.8 3 5.5 2.1 Virginica 5.7 2.5 5 2 Virginica 5.8 2.8 5.1 2.4 Virginica 6.4 3.2 5.3 2.3 Virginica 6.5 3 5.5 1.8 Virginica 7.7 3.8 6.7 2.2 Virginica 7.7 2.6 6.9 2.3 Virginica 6 2.2 5 1.5 Virginica 6.9 3.2 5.7 2.3 Virginica 5.6 2.8 4.9 2 Virginica 7.7 2.8 6.7 2 Virginica 6.3 2.7 4.9 1.8 Virginica 6.7 3.3 5.7 2.1 Virginica 7.2 3.2 6 1.8 Virginica 6.2 2.8 4.8 1.8 Virginica 6.1 3 4.9 1.8 Virginica 6.4 2.8 5.6 2.1 Virginica 7.2 3 5.8 1.6 Virginica 7.4 2.8 6.1 1.9 Virginica 7.9 3.8 6.4 2 Virginica 6.4 2.8 5.6 2.2 Virginica 6.3 2.8 5.1 1.5 Virginica 6.1 2.6 5.6 1.4 Virginica 7.7 3 6.1 2.3 Virginica 6.3 3.4 5.6 2.4 Virginica 6.4 3.1 5.5 1.8 Virginica 6 3 4.8 1.8 Virginica 6.9 3.1 5.4 2.1 Virginica 6.7 3.1 5.6 2.4 Virginica 6.9 3.1 5.1 2.3 Virginica 5.8 2.7 5.1 1.9 Virginica 6.8 3.2 5.9 2.3 Virginica 6.7 3.3 5.7 2.5 Virginica 6.7 3 5.2 2.3 Virginica 6.3 2.5 5 1.9 Virginica 6.5 3 5.2 2 Virginica

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

0.59 0.59 0.61 0.59 0.6 0.57 0.54 0.54 0.6 0.69 0.67 0.65 0.61 0.6 0.57 0.53 0.47 0.46 0.49 0.51 0.54 0.57 0.39 0.51 0.42 0.39 0.38 0.42 0.52 0.59 0.59 0.6 0.6 0.63 0.65 0.65 0.64 0.62 0.61 0.48 0.26 0.23 0.22 0.22 0.22 0.67 0.63 0.61 0.56 0.54 0.53 0.53 0.58 0.64 0.68 0.65 0.61 0.58 0.57 0.56 0.53 0.52 0.5 0.51 0.53 0.56 0.57 0.39 0.48 0.49 0.4 0.42 0.37 0.38 0.52 0.54 0.58 0.6 0.63 0.65 0.65 0.64 0.64 0.58 0.4 0.33 0.32 0.32 0.31 0.31 0.73 0.69 0.64 0.54 0.47 0.46 0.52 0.61 0.64 0.59 0.6 0.58 0.57 0.53 0.51 0.51 0.53 0.52 0.51 0.51 0.51 0.55 0.49 0.52 0.53 0.45 0.42 0.42 0.44 0.48 0.48 0.55 0.63 0.66 0.64 0.63 0.64 0.61 0.47 0.4 0.39 0.39 0.38 0.38 0.37 0.71 0.7 0.65 0.52 0.47 0.52 0.57 0.62 0.59 0.57 0.61 0.56 0.51 0.54 0.56 0.55 0.49 0.47 0.49 0.55 0.54 0.55 0.49 0.48 0.56 0.53 0.42 0.46 0.52 0.47 0.48 0.51 0.6 0.66 0.65 0.62 0.63 0.57 0.46 0.44 0.44 0.43 0.43 0.42 0.42 0.71 0.69 0.67 0.51 0.48 0.57 0.63 0.61 0.57 0.59 0.58 0.54 0.55 0.59 0.54 0.51 0.51 0.49 0.54 0.58 0.58 0.52 0.55 0.56 0.48 0.53 0.44 0.5 0.51 0.42 0.5 0.54 0.6 0.65 0.63 0.62 0.63 0.56 0.48 0.47 0.47 0.46 0.46 0.46 0.46 0.77 0.75 0.71 0.55 0.52 0.57 0.64 0.61 0.58 0.57 0.55 0.57 0.59 0.59 0.53 0.51 0.52 0.49 0.52 0.58 0.59 0.49 0.54 0.64 0.48 0.51 0.47 0.49 0.47 0.51 0.54 0.59 0.62 0.63 0.63 0.61 0.64 0.54 0.49 0.49 0.49 0.49 0.49 0.48 0.48 0.8 0.79 0.73 0.58 0.59 0.61 0.64 0.62 0.6 0.57 0.55 0.59 0.63 0.61 0.6 0.56 0.57 0.51 0.53 0.6 0.62 0.51 0.58 0.69 0.51 0.52 0.5 0.54 0.46 0.6 0.56 0.58 0.63 0.6 0.65 0.62 0.57 0.48 0.47 0.49 0.5 0.5 0.5 0.5 0.5 0.8 0.79 0.72 0.61 0.62 0.58 0.57 0.59 0.6 0.59 0.59 0.62 0.65 0.66 0.68 0.63 0.61 0.59 0.58 0.63 0.62 0.51 0.64 0.73 0.58 0.55 0.5 0.59 0.55 0.64 0.6 0.57 0.65 0.62 0.64 0.61 0.5 0.48 0.47 0.49 0.5 0.51 0.51 0.51 0.51 0.79 0.77 0.69 0.58 0.58 0.56 0.54 0.47 0.41 0.48 0.54 0.61 0.66 0.64 0.53 0.48 0.45 0.46 0.53 0.63 0.63 0.55 0.69 0.72 0.65 0.61 0.59 0.68 0.66 0.67 0.65 0.57 0.66 0.65 0.64 0.62 0.58 0.57 0.56 0.53 0.5 0.5 0.5 0.52 0.53 0.77 0.76 0.68 0.55 0.55 0.54 0.49 0.42 0.46 0.52 0.59 0.66 0.66 0.44 0.38 0.46 0.36 0.19 0.22 0.42 0.62 0.62 0.68 0.67 0.66 0.66 0.67 0.73 0.72 0.7 0.69 0.59 0.67 0.66 0.65 0.63 0.64 0.65 0.63 0.55 0.46 0.44 0.47 0.51 0.53 0.75 0.72 0.6 0.53 0.54 0.46 0.39 0.49 0.59 0.58 0.61 0.7 0.72 0.45 0.52 0.53 0.32 0.16 0.21 0.32 0.42 0.64 0.68 0.65 0.62 0.64 0.69 0.73 0.71 0.65 0.67 0.61 0.63 0.62 0.67 0.67 0.65 0.67 0.65 0.54 0.4 0.37 0.43 0.49 0.51 0.66 0.57 0.51 0.48 0.45 0.41 0.49 0.61 0.64 0.63 0.59 0.65 0.71 0.5 0.51 0.49 0.19 0.1 0.27 0.4 0.27 0.59 0.69 0.66 0.6 0.6 0.68 0.74 0.68 0.64 0.6 0.39 0.37 0.37 0.51 0.66 0.63 0.62 0.6 0.49 0.36 0.38 0.43 0.47 0.48 0.45 0.45 0.52 0.5 0.49 0.59 0.65 0.68 0.67 0.63 0.58 0.58 0.63 0.61 0.46 0.5 0.27 0.17 0.38 0.43 0.25 0.53 0.7 0.68 0.62 0.59 0.67 0.73 0.67 0.61 0.34 0.19 0.33 0.45 0.49 0.6 0.59 0.62 0.6 0.52 0.43 0.43 0.45 0.46 0.45 0.34 0.47 0.56 0.58 0.6 0.65 0.68 0.72 0.69 0.61 0.56 0.53 0.53 0.61 0.54 0.5 0.49 0.44 0.46 0.32 0.22 0.47 0.71 0.71 0.65 0.61 0.67 0.72 0.66 0.54 0.23 0.12 0.35 0.51 0.59 0.7 0.69 0.72 0.72 0.69 0.65 0.61 0.57 0.51 0.47 0.38 0.5 0.58 0.59 0.56 0.64 0.7 0.73 0.7 0.64 0.59 0.56 0.55 0.53 0.6 0.58 0.48 0.38 0.31 0.3 0.25 0.43 0.7 0.73 0.67 0.64 0.66 0.68 0.64 0.53 0.32 0.22 0.45 0.48 0.67 0.72 0.69 0.73 0.76 0.76 0.76 0.76 0.73 0.69 0.64 0.38 0.49 0.56 0.58 0.51 0.54 0.68 0.71 0.7 0.65 0.57 0.57 0.57 0.55 0.57 0.59 0.65 0.66 0.65 0.57 0.39 0.41 0.67 0.71 0.67 0.66 0.68 0.67 0.64 0.52 0.43 0.43 0.42 0.52 0.71 0.63 0.58 0.6 0.6 0.61 0.64 0.68 0.71 0.7 0.69 0.41 0.5 0.55 0.57 0.55 0.49 0.55 0.61 0.62 0.6 0.53 0.52 0.55 0.56 0.57 0.56 0.59 0.63 0.65 0.59 0.49 0.42 0.57 0.65 0.67 0.7 0.72 0.71 0.62 0.49 0.48 0.47 0.57 0.66 0.6 0.53 0.51 0.52 0.49 0.46 0.47 0.5 0.5 0.5 0.52 0.53 0.53 0.56 0.57 0.58 0.52 0.55 0.54 0.51 0.49 0.49 0.52 0.54 0.55 0.55 0.56 0.57 0.6 0.6 0.6 0.53 0.44 0.52 0.62 0.67 0.71 0.75 0.77 0.62 0.49 0.65 0.65 0.64 0.57 0.54 0.51 0.49 0.48 0.48 0.46 0.43 0.43 0.45 0.46 0.47 0.54 0.54 0.59 0.59 0.6 0.55 0.54 0.61 0.6 0.58 0.56 0.56 0.55 0.54 0.51 0.55 0.55 0.59 0.63 0.62 0.55 0.5 0.5 0.57 0.65 0.7 0.75 0.78 0.67 0.51 0.58 0.57 0.57 0.55 0.53 0.52 0.49 0.47 0.47 0.47 0.46 0.49 0.58 0.62 0.62 0.54 0.53 0.61 0.62 0.62 0.59 0.53 0.55 0.6 0.63 0.62 0.63 0.64 0.62 0.59 0.59 0.61 0.6 0.62 0.6 0.56 0.55 0.48 0.48 0.59 0.67 0.72 0.77 0.66 0.51 0.57 0.56 0.54 0.54 0.56 0.55 0.51 0.5 0.52 0.5 0.5 0.6 0.7 0.73 0.73 0.52 0.52 0.59 0.65 0.64 0.62 0.57 0.53 0.53 0.59 0.62 0.65 0.67 0.67 0.66 0.68 0.66 0.63 0.63 0.63 0.63 0.62 0.54 0.47 0.54 0.63 0.7 0.75 0.63 0.49 0.54 0.54 0.52 0.56 0.63 0.65 0.63 0.64 0.65 0.59 0.56 0.65 0.72 0.74 0.75 0.49 0.51 0.56 0.64 0.67 0.65 0.62 0.59 0.55 0.56 0.62 0.65 0.67 0.69 0.69 0.69 0.67 0.66 0.64 0.58 0.65 0.66 0.58 0.46 0.48 0.58 0.64 0.69 0.62 0.52 0.54 0.56 0.59 0.6 0.63 0.69 0.73 0.74 0.73 0.68 0.61 0.66 0.7 0.72 0.74 0.49 0.5 0.52 0.62 0.67 0.68 0.64 0.6 0.58 0.54 0.54 0.61 0.66 0.68 0.71 0.72 0.68 0.63 0.58 0.58 0.65 0.69 0.59 0.38 0.37 0.45 0.53 0.58 0.53 0.53 0.56 0.58 0.62 0.58 0.56 0.57 0.67 0.73 0.73 0.68 0.59 0.65 0.69 0.72 0.74 0.48 0.46 0.49 0.61 0.67 0.7 0.68 0.66 0.64 0.62 0.56 0.56 0.62 0.66 0.71 0.72 0.71 0.7 0.67 0.61 0.64 0.72 0.69 0.44 0.34 0.42 0.49 0.48 0.43 0.55 0.55 0.58 0.61 0.6 0.56 0.52 0.6 0.66 0.69 0.63 0.56 0.64 0.7 0.73 0.74 0.48 0.46 0.46 0.55 0.66 0.7 0.7 0.69 0.68 0.66 0.62 0.56 0.57 0.64 0.7 0.7 0.68 0.65 0.62 0.62 0.66 0.71 0.74 0.66 0.4 0.3 0.45 0.44 0.55 0.62 0.58 0.63 0.62 0.62 0.6 0.6 0.61 0.57 0.6 0.57 0.55 0.64 0.7 0.74 0.74 0.51 0.47 0.47 0.52 0.64 0.7 0.72 0.71 0.7 0.7 0.68 0.64 0.59 0.59 0.64 0.67 0.66 0.64 0.62 0.64 0.67 0.69 0.7 0.69 0.56 0.34 0.37 0.5 0.62 0.59 0.58 0.62 0.61 0.58 0.57 0.59 0.59 0.55 0.51 0.51 0.58 0.67 0.72 0.74 0.74 0.51 0.49 0.47 0.53 0.65 0.71 0.73 0.73 0.72 0.71 0.69 0.67 0.65 0.62 0.61 0.64 0.63 0.62 0.59 0.59 0.6 0.61 0.6 0.6 0.54 0.29 0.41 0.57 0.58 0.57 0.58 0.61 0.6 0.55 0.54 0.59 0.65 0.65 0.54 0.52 0.64 0.71 0.73 0.74 0.75 0.5 0.52 0.52 0.58 0.67 0.72 0.73 0.73 0.73 0.72 0.71 0.69 0.66 0.65 0.64 0.63 0.62 0.61 0.58 0.55 0.53 0.53 0.52 0.51 0.47 0.41 0.5 0.53 0.53 0.55 0.59 0.58 0.56 0.57 0.63 0.7 0.73 0.7 0.59 0.58 0.68 0.71 0.7 0.7 0.71 0.47 0.53 0.56 0.6 0.67 0.71 0.73 0.73 0.73 0.72 0.71 0.69 0.68 0.66 0.65 0.64 0.63 0.62 0.6 0.57 0.55 0.53 0.52 0.5 0.5 0.51 0.55 0.57 0.57 0.58 0.59 0.58 0.6 0.68 0.73 0.75 0.74 0.68 0.56 0.5 0.57 0.62 0.62 0.63 0.66 0.42 0.52 0.57 0.61 0.66 0.7 0.72 0.73 0.73 0.72 0.71 0.69 0.68 0.67 0.65 0.64 0.63 0.62 0.61 0.6 0.57 0.57 0.55 0.55 0.56 0.58 0.6 0.6 0.58 0.56 0.57 0.63 0.71 0.75 0.76 0.75 0.73 0.66 0.49 0.38 0.48 0.65 0.7 0.7 0.69

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

There are many different lenses through which to view data

Slide 17

Slide 17 text

Pairs plot Heatmap Flat clustering Topic modelling Dimension reduction Correlation plot Density plot Vector quantization Persistence barcode Cluster tree Data table Scatter plot Outlier analysis Histograms Tree map Fourier analysis Time series matrix profiling Clustergram Swarm plot

Slide 18

Slide 18 text

Each approach reveals some things and hides other things

Slide 19

Slide 19 text

Look at your data!

Slide 20

Slide 20 text

Exploring your data through many different lenses can help you find the right questions to ask

Slide 21

Slide 21 text

Beyond plotting the most powerful tools come from machine learning

Slide 22

Slide 22 text

Machine Learning

Slide 23

Slide 23 text

Classical Machine Learning

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

Are we really just fitting multivariate polynomials?

Slide 27

Slide 27 text

Image by Randall Munroe: https://xkcd.com/1838/

Slide 28

Slide 28 text

Unsupervised Learning

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

Two clusters?

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

Look at your data!

Slide 36

Slide 36 text

What is going to determine which way the data might cluster?

Slide 37

Slide 37 text

How do you compare two data samples?

Slide 38

Slide 38 text

For unsupervised learning dissimilarity is what matters

Slide 39

Slide 39 text

What is the geometry of the data under a chosen dissimilarity?

Slide 40

Slide 40 text

Some Topology

Slide 41

Slide 41 text

Topology (noun): 1. The study of geometrical properties and spatial relations unaffected by the continuous change of shape or size of figures. 2. The way in which constituent parts are interrelated or arranged. — Oxford English Dictionary

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

Continuity, infinity, and the continuum can be hard to work with.

Slide 44

Slide 44 text

Can we make topology finite and combinatorial?

Slide 45

Slide 45 text

Simplicial Complexes

Slide 46

Slide 46 text

Build simple pieces of varying dimension in a combinatorial way

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

No content

Slide 52

Slide 52 text

We can build up a vast array of topological spaces in this purely combinatorial way

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

Face maps provide the combinatorics to glue simplicial complexes together

Slide 56

Slide 56 text

· · · ! ! ! ! X2 ! ! ! X1 ! !X0 AAAC3niclVJNSxtBGJ5dP5rGr2iPvQwGwYthZ6Oot0AvHi00Gthd4uxkkgzOziwz71bCkoMXDxXx6u/qrT+k987GFFoxiC8MPDzP+/1OmkthIQh+ef7S8srqh9rH+tr6xuZWY3vnwurCMN5lWmrTS6nlUijeBQGS93LDaZZKfplef6n0y+/cWKHVN5jkPMnoSImhYBQc1W/8jtlAg8WxLVILlF2XsdRqZMRoDNQYfRPH0QHhWbKAxi94vEiY4l4/fLvMu/KR9+erwoJ6v9EMWiQ8PSQhduAkaJ9WoE3ax+ERJq1gZk00t/N+42c80KzIuAImqbURCXJISmpAMMmn9biwPHdt0BGPHFQ04zYpZ+eZ4j3HDPBQG/cU4Bn7b0RJM2snWeo8Mwpj+1KryNe0qIDhSVIKlRfAFXsuNCwkBo2rW+OBMJyBnDhAmRGuV8zG1FAG7kdUS/g7KV4MLsIWcSv6etjsnM3XUUOf0S7aRwQdow46Q+eoi5gXebfeD+/ev/Lv/Af/8dnV9+Yxn9B/5j/9ARVD6z8= AAAC3niclVJNSxtBGJ5dP5rGr2iPvQwGwYthZ6Oot0AvHi00Gthd4uxkkgzOziwz71bCkoMXDxXx6u/qrT+k987GFFoxiC8MPDzP+/1OmkthIQh+ef7S8srqh9rH+tr6xuZWY3vnwurCMN5lWmrTS6nlUijeBQGS93LDaZZKfplef6n0y+/cWKHVN5jkPMnoSImhYBQc1W/8jtlAg8WxLVILlF2XsdRqZMRoDNQYfRPH0QHhWbKAxi94vEiY4l4/fLvMu/KR9+erwoJ6v9EMWiQ8PSQhduAkaJ9WoE3ax+ERJq1gZk00t/N+42c80KzIuAImqbURCXJISmpAMMmn9biwPHdt0BGPHFQ04zYpZ+eZ4j3HDPBQG/cU4Bn7b0RJM2snWeo8Mwpj+1KryNe0qIDhSVIKlRfAFXsuNCwkBo2rW+OBMJyBnDhAmRGuV8zG1FAG7kdUS/g7KV4MLsIWcSv6etjsnM3XUUOf0S7aRwQdow46Q+eoi5gXebfeD+/ev/Lv/Af/8dnV9+Yxn9B/5j/9ARVD6z8= AAAC3niclVJNSxtBGJ5dP5rGr2iPvQwGwYthZ6Oot0AvHi00Gthd4uxkkgzOziwz71bCkoMXDxXx6u/qrT+k987GFFoxiC8MPDzP+/1OmkthIQh+ef7S8srqh9rH+tr6xuZWY3vnwurCMN5lWmrTS6nlUijeBQGS93LDaZZKfplef6n0y+/cWKHVN5jkPMnoSImhYBQc1W/8jtlAg8WxLVILlF2XsdRqZMRoDNQYfRPH0QHhWbKAxi94vEiY4l4/fLvMu/KR9+erwoJ6v9EMWiQ8PSQhduAkaJ9WoE3ax+ERJq1gZk00t/N+42c80KzIuAImqbURCXJISmpAMMmn9biwPHdt0BGPHFQ04zYpZ+eZ4j3HDPBQG/cU4Bn7b0RJM2snWeo8Mwpj+1KryNe0qIDhSVIKlRfAFXsuNCwkBo2rW+OBMJyBnDhAmRGuV8zG1FAG7kdUS/g7KV4MLsIWcSv6etjsnM3XUUOf0S7aRwQdow46Q+eoi5gXebfeD+/ev/Lv/Af/8dnV9+Yxn9B/5j/9ARVD6z8= AAAC3niclVJNSxtBGJ5dP5rGr2iPvQwGwYthZ6Oot0AvHi00Gthd4uxkkgzOziwz71bCkoMXDxXx6u/qrT+k987GFFoxiC8MPDzP+/1OmkthIQh+ef7S8srqh9rH+tr6xuZWY3vnwurCMN5lWmrTS6nlUijeBQGS93LDaZZKfplef6n0y+/cWKHVN5jkPMnoSImhYBQc1W/8jtlAg8WxLVILlF2XsdRqZMRoDNQYfRPH0QHhWbKAxi94vEiY4l4/fLvMu/KR9+erwoJ6v9EMWiQ8PSQhduAkaJ9WoE3ax+ERJq1gZk00t/N+42c80KzIuAImqbURCXJISmpAMMmn9biwPHdt0BGPHFQ04zYpZ+eZ4j3HDPBQG/cU4Bn7b0RJM2snWeo8Mwpj+1KryNe0qIDhSVIKlRfAFXsuNCwkBo2rW+OBMJyBnDhAmRGuV8zG1FAG7kdUS/g7KV4MLsIWcSv6etjsnM3XUUOf0S7aRwQdow46Q+eoi5gXebfeD+/ev/Lv/Af/8dnV9+Yxn9B/5j/9ARVD6z8=

Slide 57

Slide 57 text

This provides us with simple combinatorial and algebraic tools for working with topological spaces.

Slide 58

Slide 58 text

Homology

Slide 59

Slide 59 text

Boundary map ∂i : ℤ[Xi ] → ℤ[Xi−1 ]

Slide 60

Slide 60 text

∂i (∑ k ak σk) = ∑ k,ℓ ak (−1)ℓdℓ (σk )

Slide 61

Slide 61 text

No content

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

The sign can provide a direction for a simplex

Slide 64

Slide 64 text

No content

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

Boundaries form cycles What if we apply the boundary map to a cycle?

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

No content

Slide 70

Slide 70 text

No content

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

The boundary map will map cycles to zero

Slide 74

Slide 74 text

No content

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

No content

Slide 77

Slide 77 text

Cycles form a group

Slide 78

Slide 78 text

∂1 : ℤ[X1 ] → ℤ[X0 ]

Slide 79

Slide 79 text

ker(∂1 ) ◃ ℤ[X1 ]

Slide 80

Slide 80 text

No content

Slide 81

Slide 81 text

No content

Slide 82

Slide 82 text

No content

Slide 83

Slide 83 text

No content

Slide 84

Slide 84 text

No content

Slide 85

Slide 85 text

No content

Slide 86

Slide 86 text

There is a group of cycles modulo filled triangles

Slide 87

Slide 87 text

H1(X) = ker(@1) im(@2) AAACTHicbVBNT9tAEF2HFkJoS4Ajl1UjpORi2XGA5ICEaA9cqoJEIFIcWevNGFZZ26vdNSKy/Dv4NVzh1nv/BzeExDpEtHw8aaSnNzP7dl4oOFPacf5alYVPnxeXqsu1lS9fv63W19ZPVZpJCn2a8lQOQqKAswT6mmkOAyGBxCGHs3Dyo+yfXYJULE1O9FTAKCbnCYsYJdpIQd09DNzmoIX3sB9JQnN/ArLpCyI1IzxwW0Xus/if0G4VQb3h2O225+1uY8f23E635xnS2fG6joNd25mhgeY4CtasBX+c0iyGRFNOlBq6jtCjvHyScihqfqZAEDoh5zA0NCExqFE+u63AW0YZ4yiVphKNZ+r/GzmJlZrGoZmMib5Qb3ul+FFvmOmoO8pZIjINCX02ijKOdYrLoPCYSaCaTw0hVDLzV0wviMlImzhfuVxNBaPmjJ9gzpPwy1j9FiCJTmWZXpGbqs1i65XYeQnpPTlt265nd447jf2DeYBVtIm+oyZy0S7aR4foCPURRdfoBt2iO+uPdW89WI/PoxVrvrOBXqGy+AQsXLLV

Slide 88

Slide 88 text

Hi(X) = ker(@i) im(@i+1) AAACUHicbVBNT9tAEB2HftC0tKE99rIiqpQIybLjAOFQCZUeuCBAIhApjqz1ZgyrrO3V7rpqZPmX9Nf02t648U+4lXWgfJQ+abRPb2Z39r1YCq6N5106jaVnz1+8XH7VfP1m5e271ur7E50XiuGQ5SJXo5hqFDzDoeFG4EgqpGks8DSe7db902+oNM+zYzOXOEnpWcYTzqixUtTa2It4Z9Qln0mYKMrKcIaqE0qqDKci4t2qDHl6L5R83a+6VdRqe26vFwRbG8RzA78/2A4s6W8GA88jvust0IZbHEarzlI4zVmRYmaYoFqPfU+aSVk/ywRWzbDQKCmb0TMcW5rRFPWkXPiryCerTEmSK1uZIQv14Y2SplrP09hOptSc6397tfi/3rgwyWBS8kwWBjN2sygpBDE5qcMiU66QGTG3hDLF7V8JO6c2J2MjfbTl+1xyZm18RWtP4b5ddSBRUZOrOsGqtNVcxLZdY/MupKfkpOf6gds/6rd3vtwGuAwfYQ064MMW7MAeHMIQGPyAn/ALfjsXzpXzp+HcjP494QM8QqN5DV0Us/k=

Slide 89

Slide 89 text

What does ∂0 do? What should ∂0 do?

Slide 90

Slide 90 text

Topology from Data

Slide 91

Slide 91 text

Cech Complexes

Slide 92

Slide 92 text

No content

Slide 93

Slide 93 text

No content

Slide 94

Slide 94 text

No content

Slide 95

Slide 95 text

No content

Slide 96

Slide 96 text

Theorem 1 (Nerve theorem). Let U = {Ui }i2I be a cover of a topological space X. If, for all ⇢ I T i2 Ui is either contractible or empty, then N(U) is homtopically equivalent to X. AAADUHicdZJNb9NAEIbXCR8lfLSFAwcuIxKkIlVRnICaHpAqcSESqoqUtJHiKFpvxs6q67XxrlMiy/warvBjuPFPuME4MVWoYC8ez+zO+86z6ydKGtvp/HBq9Vu379zdude4/+Dho929/cfnJs5SgSMRqzgd+9ygkhpHVlqF4yRFHvkKL/zLt2X9YompkbEe2lWC04iHWgZScEup2b7z1PMxlDq3C4xTjIrJKaZLhOp32niPFlpexO1CcJWPCngDXj6aSa+Y5dKTGgZFC3wEDiImIYgDCm2ckHJIKgpMwgVCa9xqwyA4hCBOgStFPY0MIw6eyXxDGoMWpXwZCp5UjTcbCiCxFkgDKMlUSjLaplxYSSMCNcMosavD0rDeMnpaHGyZfrlusIgjMlaaUivAj5lccoXaktu1vYaHen7NYbbX7LTd7vErtwsU9Du94zLoub2j7mtw2531arJqnRFK8OaxyCJqKRQ3ZuJ2EjvNeWqlUFg0vMwgsbjkIU4o1DxCM83XV1jAC8rM13ACmg/W2e0TOY+MWUU+7SzHMjdrZfJftUlmg/40lzrJLGqxEQoyVQ5dvgeYyxSFJSBzyUUqySuIBS8B06u5qWIXEc2h8aqidE0rH1ZBw6PLJKqhXeSexU/2Ss7JWd4XVCOmf8DB/4Pzbtsl4h+6zZNhRXeHPWPP2QFz2RE7Ye/YGRsx4Xx2vjhfnW+177WftV91Z7O1Vn3ZE/bXqjd+A6KpECw= AAADUHicdZJNb9NAEIbXCR8lfLSFAwcuIxKkIlVRnICaHpAqcSESqoqUtJHiKFpvxs6q67XxrlMiy/warvBjuPFPuME4MVWoYC8ez+zO+86z6ydKGtvp/HBq9Vu379zdude4/+Dho929/cfnJs5SgSMRqzgd+9ygkhpHVlqF4yRFHvkKL/zLt2X9YompkbEe2lWC04iHWgZScEup2b7z1PMxlDq3C4xTjIrJKaZLhOp32niPFlpexO1CcJWPCngDXj6aSa+Y5dKTGgZFC3wEDiImIYgDCm2ckHJIKgpMwgVCa9xqwyA4hCBOgStFPY0MIw6eyXxDGoMWpXwZCp5UjTcbCiCxFkgDKMlUSjLaplxYSSMCNcMosavD0rDeMnpaHGyZfrlusIgjMlaaUivAj5lccoXaktu1vYaHen7NYbbX7LTd7vErtwsU9Du94zLoub2j7mtw2531arJqnRFK8OaxyCJqKRQ3ZuJ2EjvNeWqlUFg0vMwgsbjkIU4o1DxCM83XV1jAC8rM13ACmg/W2e0TOY+MWUU+7SzHMjdrZfJftUlmg/40lzrJLGqxEQoyVQ5dvgeYyxSFJSBzyUUqySuIBS8B06u5qWIXEc2h8aqidE0rH1ZBw6PLJKqhXeSexU/2Ss7JWd4XVCOmf8DB/4Pzbtsl4h+6zZNhRXeHPWPP2QFz2RE7Ye/YGRsx4Xx2vjhfnW+177WftV91Z7O1Vn3ZE/bXqjd+A6KpECw= AAADUHicdZJNb9NAEIbXCR8lfLSFAwcuIxKkIlVRnICaHpAqcSESqoqUtJHiKFpvxs6q67XxrlMiy/warvBjuPFPuME4MVWoYC8ez+zO+86z6ydKGtvp/HBq9Vu379zdude4/+Dho929/cfnJs5SgSMRqzgd+9ygkhpHVlqF4yRFHvkKL/zLt2X9YompkbEe2lWC04iHWgZScEup2b7z1PMxlDq3C4xTjIrJKaZLhOp32niPFlpexO1CcJWPCngDXj6aSa+Y5dKTGgZFC3wEDiImIYgDCm2ckHJIKgpMwgVCa9xqwyA4hCBOgStFPY0MIw6eyXxDGoMWpXwZCp5UjTcbCiCxFkgDKMlUSjLaplxYSSMCNcMosavD0rDeMnpaHGyZfrlusIgjMlaaUivAj5lccoXaktu1vYaHen7NYbbX7LTd7vErtwsU9Du94zLoub2j7mtw2531arJqnRFK8OaxyCJqKRQ3ZuJ2EjvNeWqlUFg0vMwgsbjkIU4o1DxCM83XV1jAC8rM13ACmg/W2e0TOY+MWUU+7SzHMjdrZfJftUlmg/40lzrJLGqxEQoyVQ5dvgeYyxSFJSBzyUUqySuIBS8B06u5qWIXEc2h8aqidE0rH1ZBw6PLJKqhXeSexU/2Ss7JWd4XVCOmf8DB/4Pzbtsl4h+6zZNhRXeHPWPP2QFz2RE7Ye/YGRsx4Xx2vjhfnW+177WftV91Z7O1Vn3ZE/bXqjd+A6KpECw= AAADUHicdZJNb9NAEIbXCR8lfLSFAwcuIxKkIlVRnICaHpAqcSESqoqUtJHiKFpvxs6q67XxrlMiy/warvBjuPFPuME4MVWoYC8ez+zO+86z6ydKGtvp/HBq9Vu379zdude4/+Dho929/cfnJs5SgSMRqzgd+9ygkhpHVlqF4yRFHvkKL/zLt2X9YompkbEe2lWC04iHWgZScEup2b7z1PMxlDq3C4xTjIrJKaZLhOp32niPFlpexO1CcJWPCngDXj6aSa+Y5dKTGgZFC3wEDiImIYgDCm2ckHJIKgpMwgVCa9xqwyA4hCBOgStFPY0MIw6eyXxDGoMWpXwZCp5UjTcbCiCxFkgDKMlUSjLaplxYSSMCNcMosavD0rDeMnpaHGyZfrlusIgjMlaaUivAj5lccoXaktu1vYaHen7NYbbX7LTd7vErtwsU9Du94zLoub2j7mtw2531arJqnRFK8OaxyCJqKRQ3ZuJ2EjvNeWqlUFg0vMwgsbjkIU4o1DxCM83XV1jAC8rM13ACmg/W2e0TOY+MWUU+7SzHMjdrZfJftUlmg/40lzrJLGqxEQoyVQ5dvgeYyxSFJSBzyUUqySuIBS8B06u5qWIXEc2h8aqidE0rH1ZBw6PLJKqhXeSexU/2Ss7JWd4XVCOmf8DB/4Pzbtsl4h+6zZNhRXeHPWPP2QFz2RE7Ye/YGRsx4Xx2vjhfnW+177WftV91Z7O1Vn3ZE/bXqjd+A6KpECw=

Slide 97

Slide 97 text

Extracting the Cech complex preserves most topological information

Slide 98

Slide 98 text

Vietoris Rips Complexes

Slide 99

Slide 99 text

No content

Slide 100

Slide 100 text

No content

Slide 101

Slide 101 text

No content

Slide 102

Slide 102 text

No content

Slide 103

Slide 103 text

Vietoris-Rips complexes are very similar to Cech complexes, but are entirely determined by the 1-skeleton

Slide 104

Slide 104 text

There are lots of related constructions for simplicial complexes: Delaunay complexes Alpha complexes Witness complexes …

Slide 105

Slide 105 text

In all cases: Dissimilarity matters

Slide 106

Slide 106 text

Mapper

Slide 107

Slide 107 text

Motivation from Morse Theory

Slide 108

Slide 108 text

Try to understand a manifold by looking at functions defined on that manifold

Slide 109

Slide 109 text

Look at the function in terms of level-sets

Slide 110

Slide 110 text

No content

Slide 111

Slide 111 text

No content

Slide 112

Slide 112 text

No content

Slide 113

Slide 113 text

No content

Slide 114

Slide 114 text

Mapper

Slide 115

Slide 115 text

No content

Slide 116

Slide 116 text

No content

Slide 117

Slide 117 text

No content

Slide 118

Slide 118 text

No content

Slide 119

Slide 119 text

No content

Slide 120

Slide 120 text

No content

Slide 121

Slide 121 text

No content

Slide 122

Slide 122 text

No content

Slide 123

Slide 123 text

No content

Slide 124

Slide 124 text

No content

Slide 125

Slide 125 text

No content

Slide 126

Slide 126 text

Applications

Slide 127

Slide 127 text

Mapper tends to get used for clustering and exploratory analysis

Slide 128

Slide 128 text

Identification of type 2 diabetes subgroups through topological analysis of patient similarity, Li et al, 2015

Slide 129

Slide 129 text

Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury, Nielson et al, 2015

Slide 130

Slide 130 text

Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Nicolau et al, 2011

Slide 131

Slide 131 text

From 5 to 13: Redefining the Positions in Basketball, Alagappan, 2012

Slide 132

Slide 132 text

No content

Slide 133

Slide 133 text

Summary

Slide 134

Slide 134 text

Provides a novel topological view of data

Slide 135

Slide 135 text

The choice of function matters a lot

Slide 136

Slide 136 text

The resolution of the cover of the projection space can have a significant impact on results

Slide 137

Slide 137 text

https://kepler-mapper.scikit-tda.org/

Slide 138

Slide 138 text

Persistent Homology

Slide 139

Slide 139 text

Consider a Vietoris- Rips complex…

Slide 140

Slide 140 text

No content

Slide 141

Slide 141 text

For any given radius there is homology we can compute

Slide 142

Slide 142 text

By fixing a radius we induce topology and forget metric information

Slide 143

Slide 143 text

How can we get metric information back into our computations?

Slide 144

Slide 144 text

Vr (X) ⊆ Vr+ϵ (X) ⊆ Vr+2ϵ (X)

Slide 145

Slide 145 text

Vr(X) // Vr+✏(X) // Vr+2✏(X) Hi(Vr(X)) // Hi(Vr+✏(X)) // Hi(Vr+2✏(X)) AAAClnicbVFda9swFJW9rh/e2qXdS6EvYmElpeDJcdqmL6V0jPYxgyUNxMbIitKKyrKR5BFj/Ef2z/oD+j8qJyEk7Q4ILufce644N844UxqhZ8v+sPFxc2t7x/n0eXfvS2P/YKDSXBLaJylP5TDGinImaF8zzekwkxQnMaf38dPPWr//S6Viqfiji4yGCX4QbMII1oaKGv+CaZFgLdm0dAaRbA1PYIDlSIbwGA6iUp4GNFOMp6J6L7VXtSBw7iLWmnucLBvn3BufFaOlvmZWu1VRo4ncdtv3L84gcn2v0730TdE597sIQc9FMzTBAr2o8RKMU5InVGjCsVIjD2U6LLHUjHBaOUGuaIbJE36gI1MKnFAVlrMMK/jdMGM4SaV5QsMZuzpR4kSpIolNp8nrUb3VavJ/2ijXk25YMpHlmgoyXzTJOdQprA8Cx0xSonlhCkwkM3+F5BFLTLQ529qWaZExUjmzXC5rnC9TeF8M2q7nu53fneb1zSKhbXAEvoEW8MAFuAZ3oAf6gFjAOrZ+WMg+tK/sX/btvNW2FjNfwRrs3iuKkMVc

Slide 146

Slide 146 text

Compute homology for varying radii!

Slide 147

Slide 147 text

How do we describe the result?

Slide 148

Slide 148 text

No content

Slide 149

Slide 149 text

Computing Persistent Homology

Slide 150

Slide 150 text

First, to make things easier, let’s work over a field

Slide 151

Slide 151 text

∂i : [Xi ] → [Xi−1 ] Boundary map

Slide 152

Slide 152 text

Boundary maps are between vector spaces Linear algebra

Slide 153

Slide 153 text

No content

Slide 154

Slide 154 text

Reduce to Smith normal form …

Slide 155

Slide 155 text

No content

Slide 156

Slide 156 text

No content

Slide 157

Slide 157 text

No content

Slide 158

Slide 158 text

So simple linear algebra is enough to compute everything

Slide 159

Slide 159 text

What about persistence?

Slide 160

Slide 160 text

There is a partial order on simplices based on inclusion and arrival time

Slide 161

Slide 161 text

Construct a boundary matrix over all simplices in order

Slide 162

Slide 162 text

For simplicity we’ll work in 2

Slide 163

Slide 163 text

No content

Slide 164

Slide 164 text

Reduce via column additions from left to right

Slide 165

Slide 165 text

for each column : while such that : add column to column j ∃j0 < j low(j0 ) = low(j) j0 j

Slide 166

Slide 166 text

No content

Slide 167

Slide 167 text

We can now read off the barcode or persistence diagram

Slide 168

Slide 168 text

No content

Slide 169

Slide 169 text

No content

Slide 170

Slide 170 text

This can be extended to work for other fields, but this is the core idea

Slide 171

Slide 171 text

Applications

Slide 172

Slide 172 text

Persistent homology has seen use in a diverse range of applications

Slide 173

Slide 173 text

Using Persistent Homology to Quantify a Diurnal Cycle in Hurricane Felix, Tymochko et al, 2019

Slide 174

Slide 174 text

Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis, Perea and Harer, 2014

Slide 175

Slide 175 text

Topological Eulerian Synthesis of Slow Motion Periodic Videos, Tralie and Berger, 2018

Slide 176

Slide 176 text

Coverage in sensor networks via persistent homology, De Silva and Ghrist, 2007

Slide 177

Slide 177 text

Topological Feature Vectors for Chatter Detection in Turning Processes, Yesilli et al, 2019 Chatter Diagnosis in Milling Using Supervised Learning and Topological Features Vector, Yesilli et al, 2019

Slide 178

Slide 178 text

Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing, Zhu, 2013

Slide 179

Slide 179 text

Implementation

Slide 180

Slide 180 text

Naively this algorithm is worst case O(m3)

Slide 181

Slide 181 text

The matrix is sparse and significant practical speedups can be gained through careful use of sparse matrix data structures

Slide 182

Slide 182 text

Specializing to specific cases (e.g. only Vietoris-Rips complexes) can provide significant gains

Slide 183

Slide 183 text

https://github.com/scikit-tda/ripser.py

Slide 184

Slide 184 text

Clustering

Slide 185

Slide 185 text

Find groups of points that are similar

Slide 186

Slide 186 text

What counts as a group?

Slide 187

Slide 187 text

What makes things similar enough to group together?

Slide 188

Slide 188 text

No content

Slide 189

Slide 189 text

A connected component of a super-level-set of the probability density function of the underlying (and unknown) distribution from which our data samples are drawn.

Slide 190

Slide 190 text

No content

Slide 191

Slide 191 text

No content

Slide 192

Slide 192 text

No content

Slide 193

Slide 193 text

No content

Slide 194

Slide 194 text

No content

Slide 195

Slide 195 text

How can we do such a thing in practice?

Slide 196

Slide 196 text

HDBSCAN

Slide 197

Slide 197 text

We need an effective density function over sample points

Slide 198

Slide 198 text

No content

Slide 199

Slide 199 text

No content

Slide 200

Slide 200 text

No content

Slide 201

Slide 201 text

Connected components is something persistent homology could tell us

Slide 202

Slide 202 text

Can we weave density and connectedness together?

Slide 203

Slide 203 text

No content

Slide 204

Slide 204 text

Mutual Reachability Distance

Slide 205

Slide 205 text

No content

Slide 206

Slide 206 text

No content

Slide 207

Slide 207 text

No content

Slide 208

Slide 208 text

No content

Slide 209

Slide 209 text

Applications

Slide 210

Slide 210 text

Untangling the Galaxy. I. Local Structure and Star Formation History of the Milky Way, Kounkel and Covey, 2019

Slide 211

Slide 211 text

Unsupervised star, galaxy, qso classification Application of HDBSCAN, Logan and Fotopoulou, 2019

Slide 212

Slide 212 text

Manifold learning of four-dimensional scanning transmission electron microscopy, Li et al, 2019 Machine learning for the structure–energy–property landscapes of molecular crystals, Musil et al, 2017

Slide 213

Slide 213 text

Uncovering Large-Scale Conformational Change in Molecular Dynamics without Prior Knowledge, Melvin et al, 2016

Slide 214

Slide 214 text

Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure, Grossberger et al, 2018 Computational analysis of laminar structure of the human cortex based on local neuron features, Štajduhar et al, 2019

Slide 215

Slide 215 text

Parallels in the sequential organization of birdsong and human speech, Sainburg et al, 2019

Slide 216

Slide 216 text

https://www.esri.com/arcgis-blog/products/geoanalytics-server/analytics/geoanalytics-detect-delays-public-transit/

Slide 217

Slide 217 text

Our Shared Digital Future Building an Inclusive, Trustworthy and Sustainable Digital Society, World Economic Forum Insight report, 2018

Slide 218

Slide 218 text

Implementation

Slide 219

Slide 219 text

If we have points then there are 1-simplices and persistent homology computations will be worst case N O(N2) O((N2)3) = O(N6)

Slide 220

Slide 220 text

Specializations described before can get it down to O(N4)

Slide 221

Slide 221 text

Can we do any better?

Slide 222

Slide 222 text

Connected components of a weighted graph Minimum spanning trees

Slide 223

Slide 223 text

No content

Slide 224

Slide 224 text

No content

Slide 225

Slide 225 text

Spatial Indexing Ram, Lee, Ouyang, Gray 2009

Slide 226

Slide 226 text

March, Ram, Gray 2010 Curtin, March, Ram, Anderson, Gray, Isbell 2013 Dual Tree Boruvka for Euclidean Minimum Spanning Trees Where and are a data dependent constants and is the inverse Ackermann function O(max{c6, c2 p , c2 l }N log(N)α(N)) c, cp cl α

Slide 227

Slide 227 text

With a little finessing this can provide the core for HDBSCAN in time O(N log(N)α(N))

Slide 228

Slide 228 text

https://github.com/scikit-learn-contrib/hdbscan

Slide 229

Slide 229 text

Dimension Reduction

Slide 230

Slide 230 text

Find the “latent” features in your data

Slide 231

Slide 231 text

No content

Slide 232

Slide 232 text

No content

Slide 233

Slide 233 text

Matrix Factorization Neighbour Graphs

Slide 234

Slide 234 text

Matrix Factorization Principal Component Analysis Non-negative Matrix Factorization Latent Dirichlet Allocation Word2Vec GloVe Generalised Low Rank Models Linear Autoencoder

Slide 235

Slide 235 text

Neighbour Graphs Locally Linear Embedding Laplacian Eigenmaps Hessian Eigenmaps Local Tangent Space Alignment t-SNE UMAP Isomap JSE

Slide 236

Slide 236 text

PCA is the prototypical matrix factorization

Slide 237

Slide 237 text

PCA on MNIST digits

Slide 238

Slide 238 text

PCA on Fashion MNIST

Slide 239

Slide 239 text

t-SNE is the current state-of-the art for neighbour graphs

Slide 240

Slide 240 text

t-SNE on MNIST digits

Slide 241

Slide 241 text

t-SNE on Fashion MNIST

Slide 242

Slide 242 text

UMAP

Slide 243

Slide 243 text

UMAP builds mathematical theory to justify the graph based approach

Slide 244

Slide 244 text

Theorem 1 (Nerve theorem). Let U = {Ui }i2I be a cover of a topological space X. If, for all ⇢ I T i2 Ui is either contractible or empty, then N(U) is homtopically equivalent to X. AAADUHicdZJNb9NAEIbXCR8lfLSFAwcuIxKkIlVRnICaHpAqcSESqoqUtJHiKFpvxs6q67XxrlMiy/warvBjuPFPuME4MVWoYC8ez+zO+86z6ydKGtvp/HBq9Vu379zdude4/+Dho929/cfnJs5SgSMRqzgd+9ygkhpHVlqF4yRFHvkKL/zLt2X9YompkbEe2lWC04iHWgZScEup2b7z1PMxlDq3C4xTjIrJKaZLhOp32niPFlpexO1CcJWPCngDXj6aSa+Y5dKTGgZFC3wEDiImIYgDCm2ckHJIKgpMwgVCa9xqwyA4hCBOgStFPY0MIw6eyXxDGoMWpXwZCp5UjTcbCiCxFkgDKMlUSjLaplxYSSMCNcMosavD0rDeMnpaHGyZfrlusIgjMlaaUivAj5lccoXaktu1vYaHen7NYbbX7LTd7vErtwsU9Du94zLoub2j7mtw2531arJqnRFK8OaxyCJqKRQ3ZuJ2EjvNeWqlUFg0vMwgsbjkIU4o1DxCM83XV1jAC8rM13ACmg/W2e0TOY+MWUU+7SzHMjdrZfJftUlmg/40lzrJLGqxEQoyVQ5dvgeYyxSFJSBzyUUqySuIBS8B06u5qWIXEc2h8aqidE0rH1ZBw6PLJKqhXeSexU/2Ss7JWd4XVCOmf8DB/4Pzbtsl4h+6zZNhRXeHPWPP2QFz2RE7Ye/YGRsx4Xx2vjhfnW+177WftV91Z7O1Vn3ZE/bXqjd+A6KpECw= AAADUHicdZJNb9NAEIbXCR8lfLSFAwcuIxKkIlVRnICaHpAqcSESqoqUtJHiKFpvxs6q67XxrlMiy/warvBjuPFPuME4MVWoYC8ez+zO+86z6ydKGtvp/HBq9Vu379zdude4/+Dho929/cfnJs5SgSMRqzgd+9ygkhpHVlqF4yRFHvkKL/zLt2X9YompkbEe2lWC04iHWgZScEup2b7z1PMxlDq3C4xTjIrJKaZLhOp32niPFlpexO1CcJWPCngDXj6aSa+Y5dKTGgZFC3wEDiImIYgDCm2ckHJIKgpMwgVCa9xqwyA4hCBOgStFPY0MIw6eyXxDGoMWpXwZCp5UjTcbCiCxFkgDKMlUSjLaplxYSSMCNcMosavD0rDeMnpaHGyZfrlusIgjMlaaUivAj5lccoXaktu1vYaHen7NYbbX7LTd7vErtwsU9Du94zLoub2j7mtw2531arJqnRFK8OaxyCJqKRQ3ZuJ2EjvNeWqlUFg0vMwgsbjkIU4o1DxCM83XV1jAC8rM13ACmg/W2e0TOY+MWUU+7SzHMjdrZfJftUlmg/40lzrJLGqxEQoyVQ5dvgeYyxSFJSBzyUUqySuIBS8B06u5qWIXEc2h8aqidE0rH1ZBw6PLJKqhXeSexU/2Ss7JWd4XVCOmf8DB/4Pzbtsl4h+6zZNhRXeHPWPP2QFz2RE7Ye/YGRsx4Xx2vjhfnW+177WftV91Z7O1Vn3ZE/bXqjd+A6KpECw= AAADUHicdZJNb9NAEIbXCR8lfLSFAwcuIxKkIlVRnICaHpAqcSESqoqUtJHiKFpvxs6q67XxrlMiy/warvBjuPFPuME4MVWoYC8ez+zO+86z6ydKGtvp/HBq9Vu379zdude4/+Dho929/cfnJs5SgSMRqzgd+9ygkhpHVlqF4yRFHvkKL/zLt2X9YompkbEe2lWC04iHWgZScEup2b7z1PMxlDq3C4xTjIrJKaZLhOp32niPFlpexO1CcJWPCngDXj6aSa+Y5dKTGgZFC3wEDiImIYgDCm2ckHJIKgpMwgVCa9xqwyA4hCBOgStFPY0MIw6eyXxDGoMWpXwZCp5UjTcbCiCxFkgDKMlUSjLaplxYSSMCNcMosavD0rDeMnpaHGyZfrlusIgjMlaaUivAj5lccoXaktu1vYaHen7NYbbX7LTd7vErtwsU9Du94zLoub2j7mtw2531arJqnRFK8OaxyCJqKRQ3ZuJ2EjvNeWqlUFg0vMwgsbjkIU4o1DxCM83XV1jAC8rM13ACmg/W2e0TOY+MWUU+7SzHMjdrZfJftUlmg/40lzrJLGqxEQoyVQ5dvgeYyxSFJSBzyUUqySuIBS8B06u5qWIXEc2h8aqidE0rH1ZBw6PLJKqhXeSexU/2Ss7JWd4XVCOmf8DB/4Pzbtsl4h+6zZNhRXeHPWPP2QFz2RE7Ye/YGRsx4Xx2vjhfnW+177WftV91Z7O1Vn3ZE/bXqjd+A6KpECw= AAADUHicdZJNb9NAEIbXCR8lfLSFAwcuIxKkIlVRnICaHpAqcSESqoqUtJHiKFpvxs6q67XxrlMiy/warvBjuPFPuME4MVWoYC8ez+zO+86z6ydKGtvp/HBq9Vu379zdude4/+Dho929/cfnJs5SgSMRqzgd+9ygkhpHVlqF4yRFHvkKL/zLt2X9YompkbEe2lWC04iHWgZScEup2b7z1PMxlDq3C4xTjIrJKaZLhOp32niPFlpexO1CcJWPCngDXj6aSa+Y5dKTGgZFC3wEDiImIYgDCm2ckHJIKgpMwgVCa9xqwyA4hCBOgStFPY0MIw6eyXxDGoMWpXwZCp5UjTcbCiCxFkgDKMlUSjLaplxYSSMCNcMosavD0rDeMnpaHGyZfrlusIgjMlaaUivAj5lccoXaktu1vYaHen7NYbbX7LTd7vErtwsU9Du94zLoub2j7mtw2531arJqnRFK8OaxyCJqKRQ3ZuJ2EjvNeWqlUFg0vMwgsbjkIU4o1DxCM83XV1jAC8rM13ACmg/W2e0TOY+MWUU+7SzHMjdrZfJftUlmg/40lzrJLGqxEQoyVQ5dvgeYyxSFJSBzyUUqySuIBS8B06u5qWIXEc2h8aqidE0rH1ZBw6PLJKqhXeSexU/2Ss7JWd4XVCOmf8DB/4Pzbtsl4h+6zZNhRXeHPWPP2QFz2RE7Ye/YGRsx4Xx2vjhfnW+177WftV91Z7O1Vn3ZE/bXqjd+A6KpECw=

Slide 245

Slide 245 text

No content

Slide 246

Slide 246 text

No content

Slide 247

Slide 247 text

No content

Slide 248

Slide 248 text

If the data is uniformly distributed on the manifold then the cover will be “good”

Slide 249

Slide 249 text

No content

Slide 250

Slide 250 text

Vary the notion of distance according to the density

Slide 251

Slide 251 text

No content

Slide 252

Slide 252 text

We can do this all formally using some category theory sleight-of-hand

Slide 253

Slide 253 text

Suppose we were given a low dimensional representation

Slide 254

Slide 254 text

We can apply the same process to get a probabilistic graph!

Slide 255

Slide 255 text

Now measure the distance between the graphs using cross- entropy and optimize

Slide 256

Slide 256 text

X a2A µ(a) log ✓ µ(a) ⌫(a) ◆ + (1 µ(a)) log ✓ 1 µ(a) 1 ⌫(a) ◆ AAADFXicfVHLjtMwFHXCY4byamHJxqJC6ghRJSloZnaDQIgNYoB2ZqS6qlz3JrHGcSLbYaisbPgJvoYdYsuaJX+Ck2YEHR5Xsnx0jo/u9T2LQnBtguC751+6fOXq1va1zvUbN2/d7vbuHOm8VAwmLBe5OllQDYJLmBhuBJwUCmi2EHC8OH1W68fvQWmey7FZFTDLaCJ5zBk1jpp3LZkSXWZzSwmX+GmFSVYO6A4ReUIExGZAYkWZXbOVJbK5ieJJanbwQzwI8aPW84fpl1St8YaZzObdfjAMo/3HYYQd2AtG+zUYhaPd6AkOh0FTfdTW4bznfSTLnJUZSMME1XoaBoWZWaoMZwKqDik1FJSd0gSmDkqagZ7ZZksVfuCYJY5z5Y40uGF/d1iaab3KFu5lRk2qL2o1+TdtWpp4b2a5LEoDkq0bxaXAJsf1yvGSK2BGrBygTHE3K2YpdRsyLpiLXUyauX9IODMp5Aoy296VHbegQzS4nGViUksMfDBnfOkms2HEavE5uNUoeOXGfF2AoiZXlrzg8i1Q4QJsxo/tOfEfwzsukw1DQ1QutfNo8L/BUTQMXaZvov7BuM1vG91D99EAhWgXHaCX6BBNEEM/vC2v6/X8T/5n/4v/df3U91rPXbRR/refSHP9Ew== AAADFXicfVHLjtMwFHXCY4byamHJxqJC6ghRJSloZnaDQIgNYoB2ZqS6qlz3JrHGcSLbYaisbPgJvoYdYsuaJX+Ck2YEHR5Xsnx0jo/u9T2LQnBtguC751+6fOXq1va1zvUbN2/d7vbuHOm8VAwmLBe5OllQDYJLmBhuBJwUCmi2EHC8OH1W68fvQWmey7FZFTDLaCJ5zBk1jpp3LZkSXWZzSwmX+GmFSVYO6A4ReUIExGZAYkWZXbOVJbK5ieJJanbwQzwI8aPW84fpl1St8YaZzObdfjAMo/3HYYQd2AtG+zUYhaPd6AkOh0FTfdTW4bznfSTLnJUZSMME1XoaBoWZWaoMZwKqDik1FJSd0gSmDkqagZ7ZZksVfuCYJY5z5Y40uGF/d1iaab3KFu5lRk2qL2o1+TdtWpp4b2a5LEoDkq0bxaXAJsf1yvGSK2BGrBygTHE3K2YpdRsyLpiLXUyauX9IODMp5Aoy296VHbegQzS4nGViUksMfDBnfOkms2HEavE5uNUoeOXGfF2AoiZXlrzg8i1Q4QJsxo/tOfEfwzsukw1DQ1QutfNo8L/BUTQMXaZvov7BuM1vG91D99EAhWgXHaCX6BBNEEM/vC2v6/X8T/5n/4v/df3U91rPXbRR/refSHP9Ew== AAADFXicfVHLjtMwFHXCY4byamHJxqJC6ghRJSloZnaDQIgNYoB2ZqS6qlz3JrHGcSLbYaisbPgJvoYdYsuaJX+Ck2YEHR5Xsnx0jo/u9T2LQnBtguC751+6fOXq1va1zvUbN2/d7vbuHOm8VAwmLBe5OllQDYJLmBhuBJwUCmi2EHC8OH1W68fvQWmey7FZFTDLaCJ5zBk1jpp3LZkSXWZzSwmX+GmFSVYO6A4ReUIExGZAYkWZXbOVJbK5ieJJanbwQzwI8aPW84fpl1St8YaZzObdfjAMo/3HYYQd2AtG+zUYhaPd6AkOh0FTfdTW4bznfSTLnJUZSMME1XoaBoWZWaoMZwKqDik1FJSd0gSmDkqagZ7ZZksVfuCYJY5z5Y40uGF/d1iaab3KFu5lRk2qL2o1+TdtWpp4b2a5LEoDkq0bxaXAJsf1yvGSK2BGrBygTHE3K2YpdRsyLpiLXUyauX9IODMp5Aoy296VHbegQzS4nGViUksMfDBnfOkms2HEavE5uNUoeOXGfF2AoiZXlrzg8i1Q4QJsxo/tOfEfwzsukw1DQ1QutfNo8L/BUTQMXaZvov7BuM1vG91D99EAhWgXHaCX6BBNEEM/vC2v6/X8T/5n/4v/df3U91rPXbRR/refSHP9Ew== AAADFXicfVHLjtMwFHXCY4byamHJxqJC6ghRJSloZnaDQIgNYoB2ZqS6qlz3JrHGcSLbYaisbPgJvoYdYsuaJX+Ck2YEHR5Xsnx0jo/u9T2LQnBtguC751+6fOXq1va1zvUbN2/d7vbuHOm8VAwmLBe5OllQDYJLmBhuBJwUCmi2EHC8OH1W68fvQWmey7FZFTDLaCJ5zBk1jpp3LZkSXWZzSwmX+GmFSVYO6A4ReUIExGZAYkWZXbOVJbK5ieJJanbwQzwI8aPW84fpl1St8YaZzObdfjAMo/3HYYQd2AtG+zUYhaPd6AkOh0FTfdTW4bznfSTLnJUZSMME1XoaBoWZWaoMZwKqDik1FJSd0gSmDkqagZ7ZZksVfuCYJY5z5Y40uGF/d1iaab3KFu5lRk2qL2o1+TdtWpp4b2a5LEoDkq0bxaXAJsf1yvGSK2BGrBygTHE3K2YpdRsyLpiLXUyauX9IODMp5Aoy296VHbegQzS4nGViUksMfDBnfOkms2HEavE5uNUoeOXGfF2AoiZXlrzg8i1Q4QJsxo/tOfEfwzsukw1DQ1QutfNo8L/BUTQMXaZvov7BuM1vG91D99EAhWgXHaCX6BBNEEM/vC2v6/X8T/5n/4v/df3U91rPXbRR/refSHP9Ew==

Slide 257

Slide 257 text

We are just embedding the graph

Slide 258

Slide 258 text

X a2A µ(a) log ✓ µ(a) ⌫(a) ◆ + (1 µ(a)) log ✓ 1 µ(a) 1 ⌫(a) ◆ AAADFXicfVHLjtMwFHXCY4byamHJxqJC6ghRJSloZnaDQIgNYoB2ZqS6qlz3JrHGcSLbYaisbPgJvoYdYsuaJX+Ck2YEHR5Xsnx0jo/u9T2LQnBtguC751+6fOXq1va1zvUbN2/d7vbuHOm8VAwmLBe5OllQDYJLmBhuBJwUCmi2EHC8OH1W68fvQWmey7FZFTDLaCJ5zBk1jpp3LZkSXWZzSwmX+GmFSVYO6A4ReUIExGZAYkWZXbOVJbK5ieJJanbwQzwI8aPW84fpl1St8YaZzObdfjAMo/3HYYQd2AtG+zUYhaPd6AkOh0FTfdTW4bznfSTLnJUZSMME1XoaBoWZWaoMZwKqDik1FJSd0gSmDkqagZ7ZZksVfuCYJY5z5Y40uGF/d1iaab3KFu5lRk2qL2o1+TdtWpp4b2a5LEoDkq0bxaXAJsf1yvGSK2BGrBygTHE3K2YpdRsyLpiLXUyauX9IODMp5Aoy296VHbegQzS4nGViUksMfDBnfOkms2HEavE5uNUoeOXGfF2AoiZXlrzg8i1Q4QJsxo/tOfEfwzsukw1DQ1QutfNo8L/BUTQMXaZvov7BuM1vG91D99EAhWgXHaCX6BBNEEM/vC2v6/X8T/5n/4v/df3U91rPXbRR/refSHP9Ew== AAADFXicfVHLjtMwFHXCY4byamHJxqJC6ghRJSloZnaDQIgNYoB2ZqS6qlz3JrHGcSLbYaisbPgJvoYdYsuaJX+Ck2YEHR5Xsnx0jo/u9T2LQnBtguC751+6fOXq1va1zvUbN2/d7vbuHOm8VAwmLBe5OllQDYJLmBhuBJwUCmi2EHC8OH1W68fvQWmey7FZFTDLaCJ5zBk1jpp3LZkSXWZzSwmX+GmFSVYO6A4ReUIExGZAYkWZXbOVJbK5ieJJanbwQzwI8aPW84fpl1St8YaZzObdfjAMo/3HYYQd2AtG+zUYhaPd6AkOh0FTfdTW4bznfSTLnJUZSMME1XoaBoWZWaoMZwKqDik1FJSd0gSmDkqagZ7ZZksVfuCYJY5z5Y40uGF/d1iaab3KFu5lRk2qL2o1+TdtWpp4b2a5LEoDkq0bxaXAJsf1yvGSK2BGrBygTHE3K2YpdRsyLpiLXUyauX9IODMp5Aoy296VHbegQzS4nGViUksMfDBnfOkms2HEavE5uNUoeOXGfF2AoiZXlrzg8i1Q4QJsxo/tOfEfwzsukw1DQ1QutfNo8L/BUTQMXaZvov7BuM1vG91D99EAhWgXHaCX6BBNEEM/vC2v6/X8T/5n/4v/df3U91rPXbRR/refSHP9Ew== AAADFXicfVHLjtMwFHXCY4byamHJxqJC6ghRJSloZnaDQIgNYoB2ZqS6qlz3JrHGcSLbYaisbPgJvoYdYsuaJX+Ck2YEHR5Xsnx0jo/u9T2LQnBtguC751+6fOXq1va1zvUbN2/d7vbuHOm8VAwmLBe5OllQDYJLmBhuBJwUCmi2EHC8OH1W68fvQWmey7FZFTDLaCJ5zBk1jpp3LZkSXWZzSwmX+GmFSVYO6A4ReUIExGZAYkWZXbOVJbK5ieJJanbwQzwI8aPW84fpl1St8YaZzObdfjAMo/3HYYQd2AtG+zUYhaPd6AkOh0FTfdTW4bznfSTLnJUZSMME1XoaBoWZWaoMZwKqDik1FJSd0gSmDkqagZ7ZZksVfuCYJY5z5Y40uGF/d1iaab3KFu5lRk2qL2o1+TdtWpp4b2a5LEoDkq0bxaXAJsf1yvGSK2BGrBygTHE3K2YpdRsyLpiLXUyauX9IODMp5Aoy296VHbegQzS4nGViUksMfDBnfOkms2HEavE5uNUoeOXGfF2AoiZXlrzg8i1Q4QJsxo/tOfEfwzsukw1DQ1QutfNo8L/BUTQMXaZvov7BuM1vG91D99EAhWgXHaCX6BBNEEM/vC2v6/X8T/5n/4v/df3U91rPXbRR/refSHP9Ew== AAADFXicfVHLjtMwFHXCY4byamHJxqJC6ghRJSloZnaDQIgNYoB2ZqS6qlz3JrHGcSLbYaisbPgJvoYdYsuaJX+Ck2YEHR5Xsnx0jo/u9T2LQnBtguC751+6fOXq1va1zvUbN2/d7vbuHOm8VAwmLBe5OllQDYJLmBhuBJwUCmi2EHC8OH1W68fvQWmey7FZFTDLaCJ5zBk1jpp3LZkSXWZzSwmX+GmFSVYO6A4ReUIExGZAYkWZXbOVJbK5ieJJanbwQzwI8aPW84fpl1St8YaZzObdfjAMo/3HYYQd2AtG+zUYhaPd6AkOh0FTfdTW4bznfSTLnJUZSMME1XoaBoWZWaoMZwKqDik1FJSd0gSmDkqagZ7ZZksVfuCYJY5z5Y40uGF/d1iaab3KFu5lRk2qL2o1+TdtWpp4b2a5LEoDkq0bxaXAJsf1yvGSK2BGrBygTHE3K2YpdRsyLpiLXUyauX9IODMp5Aoy296VHbegQzS4nGViUksMfDBnfOkms2HEavE5uNUoeOXGfF2AoiZXlrzg8i1Q4QJsxo/tOfEfwzsukw1DQ1QutfNo8L/BUTQMXaZvov7BuM1vG91D99EAhWgXHaCX6BBNEEM/vC2v6/X8T/5n/4v/df3U91rPXbRR/refSHP9Ew== Get the clumps right Get the gaps right

Slide 259

Slide 259 text

UMAP on MNIST digits

Slide 260

Slide 260 text

UMAP on Fashion MNIST

Slide 261

Slide 261 text

Applications

Slide 262

Slide 262 text

Exploring Neural Networks with Activation Atlases, Carter et al, 2019

Slide 263

Slide 263 text

Visualizing and Measuring the Geometry of BERT, Coenen et al, 2019

Slide 264

Slide 264 text

The single-cell transcriptional landscape of mammalian organogenesis, Cao et al, 2019

Slide 265

Slide 265 text

A lineage-resolved molecular atlas of C. elegans embryogenesis at single cell resolution, Packer et al, 2019

Slide 266

Slide 266 text

Dimensionality reduction for visualizing single-cell data using UMAP, Becht et al, 2019

Slide 267

Slide 267 text

UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts, Diaz-Papkovich et al, 2019

Slide 268

Slide 268 text

OpenSyllabus Galaxy, McClure, 2019

Slide 269

Slide 269 text

Modeling the Structure of Recent Philosophy, Noichl, 2019

Slide 270

Slide 270 text

TimeCluster: dimension reduction applied to temporal data for visual analytics, Ali et al, 2019

Slide 271

Slide 271 text

Identifying galaxies, quasars and stars with machine learning: a new catalogue of classifications for 111 million SDSS sources without spectra, Clark et al, 2019

Slide 272

Slide 272 text

No content

Slide 273

Slide 273 text

Implementation

Slide 274

Slide 274 text

Algorithm has two hard components: 1. Find near neighbours 2. Optimize according to the cross entropy

Slide 275

Slide 275 text

Near neighbours via NN-Descent

Slide 276

Slide 276 text

Optimization via Stochastic Gradient Descent with negative sampling

Slide 277

Slide 277 text

Performance Comparison t-SNE UMAP COIL20 20 seconds 7 seconds MNIST 22 minutes 98 seconds Fashion MNIST 15 minutes 78 seconds GoogleNews 4.5 hours 14 minutes UMAP speed up over t-SNE COIL20 3x MNIST 13x Fashion MNIST 11x GoogleNews 19x

Slide 278

Slide 278 text

https://github.com/lmcinnes/umap

Slide 279

Slide 279 text

Conclusions

Slide 280

Slide 280 text

Understanding your data is critical for any analysis

Slide 281

Slide 281 text

Understanding data is an unsupervised learning problem

Slide 282

Slide 282 text

Unsupervised Inter-relationships Topology

Slide 283

Slide 283 text

Topological techniques provide powerful methods for exploratory data analysis

Slide 284

Slide 284 text

TDA Session: Saturday 8:30-10:30 and 16:00-18:00