Slide 1

Slide 1 text

“So, what are you for, exactly?” ISM✻@ST Intro Talk Chris Clark

Slide 2

Slide 2 text

Chris Clark Clark & Redfern (1988) Helston

Slide 3

Slide 3 text

Chris Clark Cardiff

Slide 4

Slide 4 text

Chris Clark

Slide 5

Slide 5 text

Chris Clark

Slide 6

Slide 6 text

Chris Clark

Slide 7

Slide 7 text

Chris Clark

Slide 8

Slide 8 text

Chris Clark

Slide 9

Slide 9 text

Chris Clark BBC (2009)

Slide 10

Slide 10 text

Chris Clark Dust in Type-Ia SNe? Gomez & Clark+ (2012a); Clark (PhD T., 2015) Kepler’s Supernova (SN1604) Tycho’s Supernova (SN1572) (optical & X-ray images)

Slide 11

Slide 11 text

Chris Clark Dust in Type-Ia SNe: Kepler’s SN Gomez & Clark+ (2012a); Clark (PhD T., 2015) Herschel-PACS (70, 100, 160 μm) Herschel-SPIRE (250, 350, 500 μm)

Slide 12

Slide 12 text

Chris Clark Dust in Type-Ia SNe: Tycho’s SN Gomez & Clark+ (2012a); Clark (PhD T., 2015) Herschel-PACS (70, 100, 160 μm) Herschel-SPIRE (250, 350, 500 μm)

Slide 13

Slide 13 text

Chris Clark Type-Ia SNe: Resolved Temps Gomez & Clark+ (2012a); Clark (PhD T., 2015) Kepler’s supernova; T hot (left) and T cold (right) Tycho’s supernova; T hot (left) and T cold (right) (Forgive the jet colour scale; I was young and didn’t know better!) Negligible dust manufactured by Type-Ia supernovæ Which means all the iron depleted into dust got there some other way

Slide 14

Slide 14 text

Chris Clark Dust in a Type-II SN: The Crab (SN1054) Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Herschel-PACS (70, 100, 160 μm) Herschel-SPIRE (250, 350, 500 μm)

Slide 15

Slide 15 text

Chris Clark Dust in a Type-II SN: The Crab (SN1054) Clark (PhD T., 2015)

Slide 16

Slide 16 text

Chris Clark The Crab: Synchrotron Power Law Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Spectral index map

Slide 17

Slide 17 text

Chris Clark The Crab: Component Separation Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Synchrotron @ 160 μm Hot dust @ 160 μm Cold dust @ 160 μm We found 0.11 M ☉ supernova dust in the Crab Nebula Subsequent studies report values across 0.04–0.22 M ☉ range

Slide 18

Slide 18 text

Chris Clark Herschel-ATLAS (Herschel Astrophysical Terahertz Large Area Survey) Eales+ (2010)

Slide 19

Slide 19 text

Chris Clark Dust-Detected H-ATLAS Low-z Galaxies Clark+ (2015) H-ATLAS 250 µm 15 < D < 45 Mpc SDSS gri-bands

Slide 20

Slide 20 text

Chris Clark BADGRS: Blue & Dusty Gas Rich Sources Clark+ (2015) Near-IR VIKING Ks Optical SDSS gri H-ATLAS 250 µm GALEX Far-UV Very blue (flux ratio FUV/K s > 25), flocculent, HI-dominated galaxies make up the majority of a blind low-z blind 250 µm selected survey.

Slide 21

Slide 21 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Clark+ (2015) More Attenuation Less Attenuation Dust Rich Dust Poor

Slide 22

Slide 22 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Clark+ (2015) M D /M S ~ 0.0005 M D /M S ~ 0.01

Slide 23

Slide 23 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Schofield (PhD, 2017)

Slide 24

Slide 24 text

Chris Clark BADGRS: The Peak of Dust-Richness Clark+ (2015) Older Younger Dust Rich Dust Poor

Slide 25

Slide 25 text

Chris Clark BADGRS: The Peak of Dust-Richness Clark+ (2015); De Vis (2017) Older Younger Dust Rich Dust Poor

Slide 26

Slide 26 text

Chris Clark BADGRS: Many Chemical Evolution Paths? De Vis+ (2017); Schofield (PhD T., 2017) Older Younger Dust Rich Dust Poor

Slide 27

Slide 27 text

Chris Clark BADGRS: Star Formation Still Ramping Up Schofield (PhD T., 2017)

Slide 28

Slide 28 text

Chris Clark BADGRS: Super Low M H2 /M dust ? Dunne+ (2018) IRAM 30m CO(1–0) I CO = 0.2–2 K km s-1 FWHM = 30–100 km s-1 M H2 /M dust = 2–27 (Z-based X CO – MW X CO ) Z = 0.5–1 Z ☉

Slide 29

Slide 29 text

Chris Clark BADGR Follow-Up: JINGLE (Preliminary) Saintonge+ (2018); Lamperti+ (2020); Clark+ (in prep.) More Attenuation Less Attenuation Dust Rich Dust Poor JINGLE JCMT dust & gas in Nearby Galaxies Legacy Exploration

Slide 30

Slide 30 text

Chris Clark Literature Values for κd (the Mass Opacity Coeff) Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019) Several dex total range in κ d values. Commonly-used standard values span a factor of ~3 range

Slide 31

Slide 31 text

Chris Clark Estimating κd with the HRS (the Herschel Reference Survey) Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019) κ 500 = 0.051 m2 kg-1 (± 0.24 dex)

Slide 32

Slide 32 text

Chris Clark Biology‽

Slide 33

Slide 33 text

Chris Clark DustPedia Database Davies+ (2017); Clark+ (2018) • The DustPedia sample (Davies+, 2017) covers all 875 nearby (D<40 Mpc) extended (1’ < D25 < 1°) galaxies observed by Herschel. • Standardised imagery & photometry spanning 42 UV–microwave bands (Clark+, 2018). • Homogenised atomic & molecular gas values for 764 & 255 DustPedia galaxies respectively (; De Vis+, 2019; Casasola+, 2020). • 10000 consistently-determined gas- phase metallicity datapoints (from IFU, slit, and fibre spectra) for 492 DustPedia galaxies (De Vis+, 2019). UV-NIR-FIR montage of some of the galaxies in the DustPedia database

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

Chris Clark DustPedia Photometry Clark+ (2018) Robust automated aperture photometry for extended sources.

Slide 36

Slide 36 text

Chris Clark DustPedia Photometry Clark+ (2018) Self-consistent photometry across many bands.

Slide 37

Slide 37 text

Chris Clark Literature Values for κd (the Mass Opacity Coeff) Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019) Several dex total range in κ d values. Commonly-used standard values span a factor of ~3 range

Slide 38

Slide 38 text

Chris Clark Data for Mapping κd Within Galaxies Clark+ (2018); Clark+ (2019) M83 M74 But also need metallicity maps to calculate κ d . These don’t normally exist for nearby galaxies…

Slide 39

Slide 39 text

Chris Clark Metallicity Mapping in Nearby Galaxies Clark+ (2019); De Vis+ (2019) Lots of individual metallicity points from individual metallicity spectra. But need to turn into metallicty map… M74 M83

Slide 40

Slide 40 text

Chris Clark Gaussian Process Regression in M74 Clark+ (2019); De Vis+ (2019) M74 Metallicity Map M74 Metallicity Uncertainty

Slide 41

Slide 41 text

Chris Clark Gaussian Process Regression in M83 Clark+ (2019); De Vis+ (2019) M83 Metallicity Map M83 Metallicity Uncertainty

Slide 42

Slide 42 text

Chris Clark Maps of κd in Nearby Galaxies! Clark+ (2018); Clark+ (2019) M74 κ d map M83 κ d map UV-NIR-FIR image for reference UV-NIR-FIR image for reference

Slide 43

Slide 43 text

Chris Clark κd vs ISM Surface Density Clark+ (2018); Clark+ (2019) Appears that κ d is anticorrelated with ISM density. Opposite of what is predicted by models…

Slide 44

Slide 44 text

Chris Clark M74 & M83 κd Compared to Literature Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019)

Slide 45

Slide 45 text

Chris Clark Issues Observing Extended Galaxies in FIR Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.) Herschel only; little diffuse emission

Slide 46

Slide 46 text

Chris Clark So, You Want to Study Dust in the Magellanic Clouds? Roman-Duval+ (2017); Clark+ (in prep.) • Herschel! • …Except faint structure at the edges got removed as ‘background’, as the map was too small; large-scale features get filtered out. • Okay, Planck then! • …And Planck is great! But its shortest band is 350μm, so you can’t constrain dust temperature. And beam is 10x worse than Herschel. • How about Spitzer? • …Only covers the shorter wavelengths, and iffy resolution. Plus, severe non-linearity issues at high surface brightness for 160μm. • But there’s always IRAS, right? • …Unless you want to observe something that is extended and has very high surface brightness. Like the Magellanic Clouds. • Urm, I suppose I could try using Akari? • … • Good point. How about JCMT? Or ISO? • …Never observed more than tiny parts of the Clouds. • I suppose that leaves…

Slide 47

Slide 47 text

Chris Clark Only Trustworthy Data is COBE! Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.) Herschel-SPIRE 250 µm COBE-DIRBE 240 µm

Slide 48

Slide 48 text

Chris Clark Feathering in Fourier Space Williams+ (2018); Clark+ (in prep.) COBE 100 µm IRAS 100 µm COBE feathered with IRAS COBE feathered with IRAS

Slide 49

Slide 49 text

Chris Clark Combine Alllll the Data in Fourier Space… Clark+ (in prep.) COBE Far-infrared data, large angular scales IRAS Far-infrared data, medium angular scales Planck Submm data, large & medium angular scales COBE + IRAS FIR data, large and medium angular scales COBE + IRAS + Planck FIR-submm data, large & medium angular scales Herschel FIR-submm data, small angular scales COBE + IRAS + Planck + Herschel FIR-submm data, large & medium & small angular scales

Slide 50

Slide 50 text

Chris Clark Issues Observing Extended Galaxies in FIR Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.) Herschel only; little diffuse emission Herschel et al; Fourier-combined (WIP)

Slide 51

Slide 51 text

Questions welcome!

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

Chris Clark Gaussian Process Regression – Reliable! Clark+ (2019); De Vis+ (2019)

Slide 54

Slide 54 text

Chris Clark Alternate Models Clark+ (2019) M74 DTM ∝ radius DTM ∝ ISM density “Toy” model M83 CHAOS Z

Slide 55

Slide 55 text

Chris Clark Alternate Models Clark+ (2019) DTM ∝ radius DTM ∝ ISM density “Toy” model

Slide 56

Slide 56 text

Chris Clark CO r 2:1 Regression Leroy+ (2012); Clark+ (2019)

Slide 57

Slide 57 text

Chris Clark SED-Fitting Example Clark+ (2019)

Slide 58

Slide 58 text

Chris Clark Dust-to-Metals in THEMIS Jones+ (2017); Jones+ (2018) Dust-to-metals expected to vary by factor of ~3.6 in THEMIS dust model (Jones+ 2017;2018). Table 3 from Jones+ (2018)

Slide 59

Slide 59 text

Chris Clark Dust-to-Metals from Depletions Jenkins (2009); De Cia+ (2016); Wiseman+ (2016) Wiseman+ (2016) and De Cia+ (2016) find DTM varies with metallicity, from DLA depletions; but for metallicities of >0.1 Z ☉ this variation is less than factor of ≤2. Jenkins+ (2009) find Milky Way variation of factor ≤2.7. Figure 7 from Wiseman+ (2016) Figure 15 from De Cia+ (2016)