Slide 1

Slide 1 text

ML -> AI Melanie Warrick | Skymind | @nyghtowl

Slide 2

Slide 2 text

@nyghtowl Backstory...

Slide 3

Slide 3 text

@nyghtowl AI?

Slide 4

Slide 4 text

@nyghtowl

Slide 5

Slide 5 text

@nyghtowl Data Science improve human intelligence @nyghtowl

Slide 6

Slide 6 text

@nyghtowl Machine Learning...

Slide 7

Slide 7 text

@nyghtowl

Slide 8

Slide 8 text

@nyghtowl

Slide 9

Slide 9 text

@nyghtowl Approaches bias-variance complexity bayesian linear neural networks SVM nearest neighbors RBF gaussian processes SVD graphical models regularization validation aggregation input processing supervised unsupervised reinforcement activate online Theory Models Methods Paradigms @nyghtowl

Slide 10

Slide 10 text

@nyghtowl Neural Nets...

Slide 11

Slide 11 text

@nyghtowl Artificial Neural Nets Input Output Hidden Run until error stops improving = converge Loss Function

Slide 12

Slide 12 text

@nyghtowl Why Neural Nets Matter? - Feature Engineering - Language & Image Analysis - Personalization

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

DUKE VINCENTIO: Well, your wit is in the care of side and that. Second Lord: They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars. Clown: Come, sir, I will make did behold your worship. VIOLA: I'll drink it.

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

@nyghtowl

Slide 17

Slide 17 text

@nyghtowl

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

@nyghtowl AI...

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

What is it? - optimal learning agents - intelligence - consciousness @nyghtowl

Slide 22

Slide 22 text

AI Range Weak = Narrow = ANI Strong = General = AGI Super = ASI @nyghtowl

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

@nyghtowl AI Research Areas - Game Playing - Search (Graph, Uniformed, Heuristic, ...) - Learning (Reinforcement, NNs, ...) - Knowledge-Based Systems - Planning & Certainty/Uncertainty - Probabilistic Reasoning - Autonomous Agents - Language Processing - Perception - Robotics

Slide 25

Slide 25 text

Artificial General Intelligence | AGI human level AI | strong AI | full AI - perform a task that a human can - self-awareness collection expert machines = human? @nyghtowl

Slide 26

Slide 26 text

Turing Test

Slide 27

Slide 27 text

Turing Test | Chatbots Eugene Goostman - 2014 - imitate 13 Ukranian boy - convinced 33% of judges Examples - ELIZA (1966) - Chato - A.L.I.C.E (pattern matching / not reasoning) - Siri & Cortana @nyghtowl

Slide 28

Slide 28 text

@nyghtowl Road to AGI Brain Computer memory fades RAM & long-term more precise 200 hz neuron speed microprocessor 2GHz (10 x) speed sleep required 24/7 10 quadrillion (10^16) cps & 20W 34 quadrillion (34^16) cps & 24MW 100B neurons simulated 302 (Open Worm)

Slide 29

Slide 29 text

@nyghtowl Singularity | ASI superintelligence - recursive self-improvement - intelligence explosion - last human invention avg predictions ~ 2040

Slide 30

Slide 30 text

@nyghtowl

Slide 31

Slide 31 text

@nyghtowl ASI Extremes Extinction Immortality

Slide 32

Slide 32 text

@nyghtowl Hype = anthropomorphizing | expectations Persuasion = data used to influence Legal = protection limits Economic = skill disparities | stagnant wages ANI Pitfalls

Slide 33

Slide 33 text

@nyghtowl

Slide 34

Slide 34 text

@nyghtowl ANI Upside Health = standardize & improve care Security | Safety = reduced crime | id anomalies Environment = optimize & minimize impact Evolution = merge with tech

Slide 35

Slide 35 text

@nyghtowl Overall Musings & such... - AI is here - Serious pursuit of AGI - Common agreement ASI will change everything... - If we merge with tech, are we still human? - Were we Cylon to begin with?

Slide 36

Slide 36 text

@nyghtowl Last Points - ML: pattern recognition & prediction - NN: feature engineering & customization - AI: recursive & unsupervised learning Take Risks => it’s worth it

Slide 37

Slide 37 text

@nyghtowl References: ● Neural Information Processing Systems Foundation https://nips.cc ● The AI Revolution: The Road to Superintellgience http://waitbutwhy.com/2015/01/artificial-intelligence- revolution-1.html ● The Coming Technological Singularity: How to Survive the Post-Human Era https://www-rohan.sdsu. edu/faculty/vinge/misc/singularity.html ● The Chinese Room Argument http://plato.stanford.edu/entries/chinese-room/#6 ● Artificial Intelligence A Modern Approach http://www.cin.ufpe.br/~tfl2/artificial-intelligence-modern-approach. 9780131038059.25368.pdf ● Artificial Intelligence: ‘Homo sapiens will be split into a handful of gods and the rest of us’ ● http://www.theguardian.com/business/2015/nov/07/artificial-intelligence-homo-sapiens-split-handful-gods ● The Future of Employment: How Susceptible Are Jobs to Computerization? http://www.oxfordmartin.ox.ac. uk/downloads/academic/The_Future_of_Employment.pdf ● The Turing Test Measures Something But It’s Not “Intelligence” http://www.smithsonianmag. com/innovation/turing-test-measures-something-but-not-intelligence-180951702/?no-ist ● Nick Bostrom: What happens when our computers get smarter than we are? https://www.ted. com/talks/nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are?language=en

Slide 38

Slide 38 text

References: @nyghtowl ● Nature of Code: Neural Networks http://natureofcode.com/book/chapter-10-neural-networks/ ● Neural Nets and Deep Learning http://neuralnetworksanddeeplearning.com/ ● Neural Nets Demystified (Welch) http://www.welchlabs.com/blog/ ● Theano Tutorial http://deeplearning.net/software/theano/tutorial/index.html#tutorial ● “The State of Deep Learning in 2014” https://speakerdeck.com/ogrisel/the-state-of-deep-learning-in-2014 ● “Hacker’s Guide to Neural Nets” https://karpathy.github.io/neuralnets/ ● “Automated Image Capturing with ConvNets and Recurrent Nets” (Karpathy) http://cs.stanford. edu/people/karpathy/sfmltalk.pdf ● Deeplearning.net ● Deep Learning Book http://www.deeplearningbook.org/ ● Learning from Data http://work.caltech.edu/lectures.html#lectures ● Convolutional Networks for Visual Recognition http://cs231n.github.io/ ● Networks and Deep Learning http://neuralnetworksanddeeplearning.com/ ● We’ve Put a Worm’s Mind in a Lego Robot’s Body http://www.smithsonianmag.com/smart-news/weve-put- worms-mind-lego-robot-body-180953399/?no-ist ● How can the various machine learning algorithms be classified summarized... https://www.quora.com/How- can-the-various-machine-learning-algorithms-be-classified-summarized-according-to-the-problems-they-solve ● How Google’s AI breakthroughs are putting us on a path to narrow AI http://www.techrepublic.com/article/how- googles-ai-breakthroughs-are-putting-us-on-a-path-to-narrow-ai/

Slide 39

Slide 39 text

@nyghtowl ● http://www.wired.com/wp-content/uploads/2015/06/siri-ft.jpg ● http://www.google.com/selfdrivingcar/images/home-where.jpg ● http://i.telegraph.co.uk/multimedia/archive/02122/WILLIAM-SHAKESPEAR_2122089b.jpg ● https://karpathy.github.io/2015/05/21/rnn-effectiveness/ ● http://static.artdiscover.com/img/news/340_2_l.jpeg ● http://users.clas.ufl.edu/glue/longman/1/einstein.html ● https://pbs.twimg.com/media/CJm9HmfVEAEXU0c.jpg:large ● http://i.telegraph.co.uk/multimedia/archive/03370/broadway2_3370419k.jpg ● https://hbr. org/resources/images/article_assets/2015/05/R1506D_MCAFEE_WHENWORKERSFALLBEHIND.png ● http://content.time.com/time/magazine/article/0,9171,1992403,00.html ● http://www.smithsonianmag.com/innovation/turing-test-measures-something-but-not-intelligence- 180951702/?no-ist ● http://www.informatik.uni-rostock.de/~sb564/ai4ie/2012/ ● http://time.com/3734332/chappie-artificial-intelligence-robot-movies/ ● http://waitbutwhy.com/2015/12/the-tail-end.html ● http://venturebeat.com/2015/05/28/pinterest-improves-related-pins-with-deep-learning-plans-product- recommendations-using-object-recognition/ References: Images

Slide 40

Slide 40 text

@nyghtowl ● http://venturebeat.com/2015/05/28/pinterest-improves-related-pins-with-deep-learning-plans-product- recommendations-using-object-recognition/ ● http://www.boredpanda.com/truth-facts-funny-graphs-wumo/ ● http://www.wallpaperup. com/uploads/wallpapers/2014/05/20/354801/big_thumb_9d23130fdb6c766d17341651056138c1.jpg ● http://waitbutwhy.com/wp-content/uploads/2015/01/Square21-1024x1012.jpg ● https://i.guim.co. uk/img/media/d87d88cbe84e827eba0c96a362eaff5c5a0917e2/0_0_4512_2709/master/4512.jpg? w=620&q=85&auto=format&sharp=10&s=2bcd04760c603e5dd7526a617a9ab4fb ● http://vignette1.wikia.nocookie.net/memoryalpha/images/4/48/Scotty_uses_a_mouse. jpg/revision/latest?cb=20070914125438&path-prefix=en ● https://www.photoshopgurus.com/forum/attachments/general-photoshop- board/55667d1431462431t-image-watermark-help-infinity-watermark_zpsfqz0orji-png ● http://infinity.voith.com/application/media/images/vp_infinity-symbol_1000x570.jpg ● http://www.omerohome.com/sites/default/files/products/Antique%20Beam%20200%20%2B% 20years%20old%20from%20Provence%20Region.jpg ● http://cheesegod.com/wp-content/uploads/2013/05/33.jpg ● http://www.slideshare.net/amcafee/mc-afee-econ-data References: Images

Slide 41

Slide 41 text

@nyghtowl ● https://encrypted-tbn1.gstatic.com/images?q=tbn: ANd9GcTDO5Om_hEOg4GOSXFxuCg0tUn9caEiIjJYlCMhH1LBx84GAsqcGw ● https://upload.wikimedia.org/wikipedia/commons/thumb/f/f6/HAL9000.svg/2000px-HAL9000.svg.png ● http://vignette1.wikia.nocookie.net/clash-of-the-titans/images/a/a2/Bubo_prop.jpg/revision/latest? cb=20120509170953 ● https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcRw1A- yCAQ_r8AfFwakWr7YQHzt8peDBR_l7sUkhjFFLT3b0-lD_A ● http://vignette3.wikia.nocookie.net/p__/images/4/44/Rosie.jpg/revision/latest? cb=20120305141357&path-prefix=protagonist ● http://tfwiki.net/mediawiki/images2/thumb/3/37/Optimusg1.jpg/350px-Optimusg1.jpg ● https://i.ytimg.com/vi/iJ3ygrRMBX4/maxresdefault.jpg ● http://m.mediapost.com/publications/13/RobbieRobot-c.jpg ● http://syntheticremarks.com/wp-content/uploads/2011/02/johnny5-short-circuit.png ● http://www.r2kt.com/top20robots/hhmarvin_large.jpg ● https://scontent.cdninstagram.com/hphotos-xap1/t51.2885- 15/s320x320/e15/10899024_892370980797830_936588702_n.jpg ● https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcTfHxkPwRbHQEKNcG9ff- IA_xqu7i7WVVDosL0EsiNeU1qELG_1 References: Images

Slide 42

Slide 42 text

@nyghtowl ● http://images6.fanpop.com/image/photos/37600000/Transparent-Baymax-big-hero-6-37653146-415- 500.png ● http://images.huffingtonpost.com/2012-04-19-Data2copy.jpg ● https://www.sideshowtoy.com/wp-content/uploads/2014/08/902246-product-silo.png ● http://1.bp.blogspot.com/-hTpZ_PyEMmk/VUDkCl7U_vI/AAAAAAAAF-I/pUpv4VP9TdY/s1600/ex- machina-551ea2c2d06c1.png ● http://cdn.90sfest.com/90s-fest/wp-content/uploads/90sfest-terminator-connect-with-us.png ● http://fc08.deviantart.net/fs30/f/2008/074/2/e/Mr_Smith_Stencil_by_Six_Hundred.png ● http://pre12.deviantart. net/9b39/th/pre/f/2012/127/d/b/ghost_in_the_shell___tachikoma_png_format_by_vlader08-d4yuso3. png ● http://t05.deviantart.net/A2r3vd3ir9dXrUnuwnQkw8flLL4=/300x200/filters:fixed_height(100,100): origin()/pre15/f1f4/th/pre/f/2013/052/c/6/sci_fi_lost_in_space_robot_by_geekeboy-d5vrphc.png ● http://i1126.photobucket.com/albums/l613/benjamin_161/Vectores/Bender.png ● http://vignette2.wikia.nocookie.net/starwars/images/6/68/BB8-Fathead.png/revision/latest/scale-to- width-down/500?cb=20150908052432 ● http://icons.iconseeker.com/png/fullsize/doctor-who/k9.png References: Images

Slide 43

Slide 43 text

@nyghtowl Special Thanks ● Alison Lowndes ● Ian Goodfellow ● Paco Nathan ● Leonid Shamis ● Chris Nichols ● Alex Black ● Lindsay Cade ● Jason Morrison ● Adam Gibson

Slide 44

Slide 44 text

@nyghtowl ML -> AI Melanie Warrick skymind.io (company) @nyghtowl gitter.im/deeplearning4j/deeplearning4j (chat)