Slide 1

Slide 1 text

NICOLÒ PAGAN FLORIAN DÖRFLER GAME THEORETICAL INFERENCE OF HUMAN BEHAVIOR IN SOCIAL NETWORKS Symposium on “Resilience and performance of networked systems” Zürich, 16.01.2020 [N. Pagan & F. Dörfler, “Game theoretical inference of human behavior in social networks”, Nature Communications, 2019]

Slide 2

Slide 2 text

MOTIVATION 01 How do social networks form? The social network structure influences individual behavior. Individual behavior determines the social network structure.

Slide 3

Slide 3 text

OBSERVATIONS 02 Actors decide with whom they want to interact. directionality: followers followees ≠

Slide 4

Slide 4 text

OBSERVATIONS 02 Actors decide with whom they want to interact. directionality: followers followees ≠ Ties can have different weights.

Slide 5

Slide 5 text

OBSERVATIONS 02 Actors decide with whom they want to interact. directionality: followers followees ≠ Ties can have different weights. Limited information is available. 1st degree 2nd degree 3rd degree

Slide 6

Slide 6 text

OBSERVATIONS 02 Actors decide with whom they want to interact. Network positions provide benefits to the actors. directionality: followers followees ≠ Limited information is available. Ties can have different weights.

Slide 7

Slide 7 text

SOCIAL NETWORK POSITIONS’ BENEFITS 03 Social Influence The more people we are connected to, the more we can influence them. [Robins, G. Doing social network research, 2015]

Slide 8

Slide 8 text

SOCIAL NETWORK POSITIONS’ BENEFITS The more our friends’ friends are our friends, the safer we feel. Social Support 03 [Coleman, J. Foundations of Social Theory, 1990] [Robins, G. Doing social network research, 2015] Social Influence The more people we are connected to, the more we can influence them.

Slide 9

Slide 9 text

SOCIAL NETWORK POSITIONS’ BENEFITS The more we are on the path between people, the more we can control. Brokerage The more our friends’ friends are our friends, the safer we feel. Social Support 03 [Burt, R. S. Structural Hole (Harvard Business School Press, Cambridge, MA, 1992] [Coleman, J. Foundations of Social Theory, 1990] [Robins, G. Doing social network research, 2015] Social Influence The more people we are connected to, the more we can influence them.

Slide 10

Slide 10 text

SOCIAL NETWORK POSITIONS’ BENEFITS Betweenness Centrality Clustering Coefficient Degree Centrality The more we are on the path between people, the more we can control. Brokerage 03 [Burt, R. S. Structural Hole (Harvard Business School Press, Cambridge, MA, 1992] [Robins, G. Doing social network research, 2015] Social Influence The more people we are connected to, the more we can influence them. The more our friends’ friends are our friends, the safer we feel. Social Support [Coleman, J. Foundations of Social Theory, 1990]

Slide 11

Slide 11 text

Economics Sociology Complex Networks SOCIAL NETWORK FORMATION •Preferential Attachment •Small-World Network •Agent-Based Model •Stochastic Actor-Oriented Models •Exponential Random Graph Models •Strategic Network Formation Model

Slide 12

Slide 12 text

A typical action of agent : i ai = [ai1 , …, ai,i−1 , ai,i+1 , …, aiN] ∈ 𝒜 = [0,1] N−1 Directed weighted network with agents. The weight quantifies the importance of the friendship among and from ’s point of view. 𝒢 𝒩 = {1,…, N} aij ∈ [0,1] i j i 04 SOCIAL NETWORK FORMATION MODEL Every agent is endowed with a payoff function and is looking for i Vi a⋆ i ∈ arg max ai ∈𝒜 Vi (ai , a−i )

Slide 13

Slide 13 text

Vi (ai , a−i ) = ti (ai , a−i ) PAYOFF FUNCTION 05 Social influence on friends ti (ai , a−i ) = ∑ j≠i aji + δi ∑ k≠j ∑ j≠i akj aji paths of length 2 + δ2 i ∑ l≠k ∑ k≠j ∑ j≠i alk akj aji paths of length 3 j j j j j j k k k l i where [Jackson, M. O. & Wolinsky, A. A strategic model of social & economic networks. J. Econom. Theory 71, 44–74 (1996)] δi ∈ [0,1]

Slide 14

Slide 14 text

PAYOFF FUNCTION 05 ui (ai , a−i ) = ∑ j≠i aij ∑ k≠i,j aik akj Clustering coefficient ti (ai , a−i ) = ∑ j≠i aji + δi ∑ k≠j ∑ j≠i akj aji paths of length 2 + δ2 i ∑ l≠k ∑ k≠j ∑ j≠i alk akj aji paths of length 3 Vi (ai , a−i ) = ti (ai , a−i ) + ui (ai , a−i ) i k j Social influence on friends [Burger, M. J. & Buskens, V. Social context and network formation: an experimental study. Social Networks 31, 63–75 (2009)] . where [Jackson, M. O. & Wolinsky, A. A strategic model of social & economic networks. J. Econom. Theory 71, 44–74 (1996)] δi ∈ [0,1]

Slide 15

Slide 15 text

PAYOFF FUNCTION 05ci (ai ) = ∑ j≠i aij Cost ti (ai , a−i ) = ∑ j≠i aji + δi ∑ k≠j ∑ j≠i akj aji paths of length 2 + δ2 i ∑ l≠k ∑ k≠j ∑ j≠i alk akj aji paths of length 3 Vi (ai , a−i ) = ti (ai , a−i ) + ui (ai , a−i ) − ci (ai ) i j j j j j j Social influence on friends ui (ai , a−i ) = ∑ j≠i aij ∑ k≠i,j aik akj Clustering coefficient [Burger, M. J. & Buskens, V. Social context and network formation: an experimental study. Social Networks 31, 63–75 (2009)] . where [Jackson, M. O. & Wolinsky, A. A strategic model of social & economic networks. J. Econom. Theory 71, 44–74 (1996)] δi ∈ [0,1]

Slide 16

Slide 16 text

PAYOFF FUNCTION ti (ai , a−i ) = ∑ j≠i aji + δi ∑ k≠j ∑ j≠i akj aji paths of length 2 + δ2 i ∑ l≠k ∑ k≠j ∑ j≠i alk akj aji paths of length 3 αi ≥ 0, βi ∈ ℝ, γi > 0 θi = {αi , βi , γi} Vi (ai , a−i |θi ) = αi ti (ai , a−i ) + βi ui (ai , a−i ) − γi ci (ai ) i j j j j j j Social influence on friends 05ci (ai ) = ∑ j≠i aij Cost ui (ai , a−i ) = ∑ j≠i aij ∑ k≠i,j aik akj Clustering coefficient [Burger, M. J. & Buskens, V. Social context and network formation: an experimental study. Social Networks 31, 63–75 (2009)] . where [Jackson, M. O. & Wolinsky, A. A strategic model of social & economic networks. J. Econom. Theory 71, 44–74 (1996)] δi ∈ [0,1]

Slide 17

Slide 17 text

Individual Behavior θi Game (𝒩, Vi (θi ), 𝒜) Network 𝒢⋆(θi ) Nodes 𝒩 Payoff Vi (θi ) Action Space 𝒜 NASH EQUILIBRIUM 06 Definition. ⟹ The network is a Nash Equilibrium if for all agents : 𝒢⋆ i Vi (ai , a−i ⋆ |θi) ≤ Vi (a⋆ i , a−i ⋆ |θi), ∀ai ∈ 𝒜 ∀i, a⋆ i ∈ arg max ai ∈𝒜 Vi (ai , a⋆ −i |θi)

Slide 18

Slide 18 text

INDIVIDUAL BEHAVIOR θi STRATEGIC PLAY DETERMINE ∀i, a⋆ i ∈ arg max ai ∈𝒜 Vi (ai , a⋆ −i |θi) STRATEGIC NETWORK FORMATION MODEL SOCIAL NETWORK STRUCTURE 𝒢⋆ (θi) Question: Given , which is in equilibrium ? θi 𝒢⋆

Slide 19

Slide 19 text

INDIVIDUAL BEHAVIOR θi STRATEGIC PLAY GAME-THEORETICAL INFERENCE ∀i, find θi s.t. Vi (ai , θi |a⋆ −i ) ≤ Vi (θi |a⋆ i , a⋆ −i ), ∀ai ∈ 𝒜 SOCIAL NETWORK STRUCTURE 𝒢⋆ (θi) Question: Given , for which is in equilibrium ? 𝒢⋆ θi 𝒢⋆ DETERMINE ∀i, a⋆ i ∈ arg max ai ∈𝒜 Vi (ai , a⋆ −i |θi) STRATEGIC NETWORK FORMATION MODEL

Slide 20

Slide 20 text

HOMOGENEOUS RATIONAL AGENTS 07 Assumptions. Derive Necessary and Sufficient conditions for Nash equilibrium stability of 4 stylised network motifs. Empty Complete Complete Balanced Bipartite Star (i) Homogeneity: for all agents . (ii) Fully rational agents. θi = θ, i θ = {α, β, γ} α ≥ 0, β ∈ ℝ, γ > 0 Vi (ai , a−i |θ) = α γ ti (ai , a−i ) + β γ ui (ai , a−i ) − ci (ai )

Slide 21

Slide 21 text

07 α /γ β/γ 0 1 2 3 4 5 6 7 8 − 2 − 1 0 1 2 Empty Complete Bipartite Star clustering cost social influence cost Assumptions. HOMOGENEOUS RATIONAL AGENTS (i) Homogeneity: for all agents . (ii) Fully rational agents. θi = θ, i θ = {α, β, γ} α ≥ 0, β ∈ ℝ, γ > 0 Vi (ai , a−i |θ) = α γ ti (ai , a−i ) + β γ ui (ai , a−i ) − ci (ai )

Slide 22

Slide 22 text

HOMOGENEOUS RATIONAL AGENTS 07 Assumptions. ⟨∇Vi (ai , a⋆ −i |θ) a⋆ i , ai − ai ⋆ ⟩ ≤ 0, ∀ai ∈ 𝒜 . Definition. The network is a Nash Equilibrium if for all agents : 𝒢⋆ i Vi (ai , a−i ⋆ |θ) ≤ Vi (a⋆ i , a−i ⋆ |θ), ∀ai ∈ 𝒜 ∀i, a⋆ i ∈ arg max ai ∈𝒜 Vi (ai , a⋆ −i |θ) . ⟹ Using the Variational Inequality approach, it is equivalent to (i) Homogeneity: for all agents . (ii) Fully rational agents. θi = θ, i θ = {α, β, γ} α ≥ 0, β ∈ ℝ, γ > 0 Vi (ai , a−i |θ) = α γ ti (ai , a−i ) + β γ ui (ai , a−i ) − ci (ai )

Slide 23

Slide 23 text

EXAMPLE: COMPLETE NETWORK 08 Theorem. Let be a complete network of homogeneous, rational agents. Define: then is a Nash equilibrium if and only if . 𝒢CN N ¯ γNE := { αδ (1 + δ(2N − 3)) + β (N − 2), if β > 0 αδ (1 + δ(2N − 3)) + 2β (N − 2), if β ≤ 0, 𝒢CN γ ≤ ¯ γNE NE α /γ β/ γ 0 1 2 3 4 5 − 2 − 1 0 1 2 θ = {α, β, γ} α ≥ 0, β ∈ ℝ, γ > 0 Vi (ai , a−i |θ) = α γ ti (ai , a−i ) + β γ ui (ai , a−i ) − ci (ai )

Slide 24

Slide 24 text

INDIVIDUAL BEHAVIOR θi STRATEGIC PLAY SOCIAL NETWORK STRUCTURE 𝒢⋆ (θi) Question: Given , for which is in equilibrium ? 𝒢⋆ θi 𝒢⋆ DETERMINE ∀i, a⋆ i ∈ arg max ai ∈𝒜 Vi (ai , a⋆ −i |θi) STRATEGIC NETWORK FORMATION MODEL GAME-THEORETICAL INFERENCE ∀i, find θi s.t. Vi (ai , θi |a⋆ −i ) ≤ Vi (θi |a⋆ i , a⋆ −i ), ∀ai ∈ 𝒜

Slide 25

Slide 25 text

STRATEGIC / IRRATIONAL PLAY INDIVIDUAL BEHAVIOR θi Question: Given , for which is in equilibrium ? 𝒢⋆ θi 𝒢⋆ SOCIAL NETWORK STRUCTURE 𝒢⋆ (θi) providing the most rational explanation θi DETERMINE ∀i, a⋆ i ∈ arg max ai ∈𝒜 Vi (ai , a⋆ −i |θi) STRATEGIC NETWORK FORMATION MODEL GAME-THEORETICAL INFERENCE

Slide 26

Slide 26 text

INVERSE OPTIMIZATION PROBLEM 09 Positive error corresponds to a violation of the Nash equilibrium condition: max {0, ei (ai , θi )} ≥ 0 ei (ai , θi ) < 0 ei (ai , θi ) := Vi (ai , a⋆ −i |θi) − Vi (a⋆ i , a⋆ −i |θi) Error function. Distance function. di (θi ) := ∫ 𝒜 (max {0, ei (ai , θi )}) 2 dai No violations: can be neglected ai 1 0 e+ i (ai , θi ) Deviation from Nash equilibrium: max {0, ei (ai , θi )} ≥ 0

Slide 27

Slide 27 text

INVERSE OPTIMIZATION PROBLEM 10 Let Then is continuously differentiable, and its gradient reads as Moreover, is convex. di (θi ) = ∫ 𝒜 (max {0, ei (ai , θi )}) 2 dai di (θi ) ∇θ di (θ) = ∫ 𝒜 2∇θi (ei (ai , θi )) max {0, ei (ai , θi )} dai . di (θi ) Theorem [Smoothness & convexity of distance function]. Given a network of agents, for all agents find the vectors of preferences such that 𝒢⋆ N i θ⋆ i θ⋆ i ∈ arg min θi ∈Θ di (θi ) Problem [Minimum NE-Distance Problem]. θi di (θi )

Slide 28

Slide 28 text

INVERSE OPTIMIZATION PROBLEM - SOLUTION 11 max operator within - dimensional integral (N − 1) First-order optimality condition 0 = ∇θi (di (θi )) = 2 ∫ 𝒜 ∇θi (ei (ai , θi )) max {0, ei (ai , θi )} dai .

Slide 29

Slide 29 text

11 The solution is similar to the solution of a Generalized Least Square Regression Problem. Note: The estimate needs to be unbiased due to the positiveness of the error terms. ̂ θi ∈ arg min θi ∈Θ ˜ di (θi ) INVERSE OPTIMIZATION PROBLEM - SOLUTION Search for an approximate solution: Consider a finite set of possible actions (samples) and let be the corresponding error. ei (aj i , θi ) {aj i } ni j=1 ⊂ 𝒜 𝒜 Approximate the distance function as ˜ di (θi ) := ni ∑ j=1 (max {0, ei (aj i , θi )}) 2 ≈ ∫ 𝒜 (max {0, ei (ai , θi )}) 2 dx

Slide 30

Slide 30 text

AUSTRALIAN BANK 12 Branch Manager Deputy Manager Service Adviser 1 Service Adviser 2 Service Adviser 3 Teller 1 Teller 2 Teller 3 Teller 4 Teller 5 Teller 6 Deputy Manager Branch Manager Service Adviser Teller Service Adviser 2 Branch Manager Service Adviser 3 Teller 1 Teller 2 Teller 3 Teller 4 Teller 5 Teller 6 lle Te T T 1 Deputy Manager Service Adviser 1 0 Clustering Social Influence Brokerage [Pattison, P., Wasserman, S., Robins, G. & Kanfer, A. M. Statistical evaluation of algebraic constraints for social networks. J. Math. Psychology 44, 536–568 (2000)]

Slide 31

Slide 31 text

RENAISSANCE FLORENCE NETWORK 12Pazzi Acciaiuoli Salviati Ginori Barbadori Albizzi Ridolfi Tornabuoni Guadagni Strozzi Castellani Peruzzi Lamberteschi Bischeri MEDICI Betweenness Centrality Clustering β/γ Marriage Business 0 95% CI β/γ ± Marriage Business Combined 0 -0.5 -1 [Padgett, J. F., & Ansell, C. K. (1993). Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98(6), 1259-1319]

Slide 32

Slide 32 text

PREFERENTIAL ATTACHMENT MODEL 13 Nodes are introduced sequentially. Each newborn receives 2 incoming ties from existing nodes (randomly selected, proportionally to the outdegree), and creates 2 outgoing ties to existing nodes (randomly selected, proportionally to the indegree). 0 10 20 30 40 50 # simulation n 3 4 5 10 20 50 100 200 0 2 −2 2 θ1 θ3 ˆ θ ˆ θ 0 10 20 30 40 50 # simulation n 3 4 5 10 20 50 100 200 0 2 −2 2 θ1 θ3 ˆ θ ˆ θ Clustering Brokerage Social Influence

Slide 33

Slide 33 text

SMALL-WORLD NETWORKS 13 rewiring probability # neighbors

Slide 34

Slide 34 text

SUMMARY & OPEN DIRECTIONS Starting from the strategic network formation literature, we proposed a new model: •sociologically well-founded, •mathematically tractable, and •statistically robust, capable of reverse-engineering human behavior from easily accessible data on the network structure. We provided evidence that our results are consistent with empirical, historical, and sociological observations. Our method offers socio-strategic interpretations of random network models. The model can be adapted to further specifications of the payoff function. Incorporating prior knowledge on the action space of the agents can reduce the computational burden. 14 Actors’ attributes have not yet been considered.

Slide 35

Slide 35 text

NICOLÒ PAGAN FLORIAN DÖRFLER [N. Pagan & F. Dörfler, “Game theoretical inference of human behavior in social networks”, Nature Communications, 2019]

Slide 36

Slide 36 text

BACK UP SLIDES

Slide 37

Slide 37 text

α /γ β/γ 0 1 2 3 4 5 6 7 8 20 0 − 20 − 40 − 60 Empty Complete Bipartite Star NASH AND PAIRWISE NASH EQUILIBRIA α /γ β/γ 0 1 2 3 4 5 6 7 8 − 2 − 1 0 1 2 Empty Complete Bipartite Star Definition. The network is a Nash Equilibrium if • for all agents : 𝒢⋆ i Vi (ai , a−i ⋆ |θi) ≤ Vi (a⋆ i , a−i ⋆ |θi), ∀ai ∈ 𝒜 . Definition. The network is a Pairwise-Nash Equilibrium if •for all pairs of distinct agents : •for all pairs of distinct agents : 𝒢⋆ (i, j) Vi (aij , a⋆ i−(i, j) , a⋆ −i) ≤ Vi (a⋆ ij , a⋆ i−(i, j) , a⋆ −i), ∀aij ∈ [0,1], (i, j) Vi (aij , aji , a⋆ −(i, j)) > Vi (a⋆ ij , a⋆ ji , a⋆ −(i, j)) ⇓ Vj (aij , aji , a⋆ −(i, j)) < Vj (a⋆ ij , a⋆ ji , a⋆ −(i, j)) .

Slide 38

Slide 38 text

STRATEGIC PLAY Assumption: Homogeneous agents [Buechel, B. & Buskens, V. The dynamics of closeness and betweenness. J.Math. Sociol. 37, 159–191 (2013)] STRATEGIC NETWORK FORMATION MODEL

Slide 39

Slide 39 text

STRATEGIC PLAY [Burger, M. J. & Buskens, V. Social context and network formation: an experimental study. Social Networks 31, 63–75 (2009).] Assumption: Homogeneous agents STRATEGIC NETWORK FORMATION MODEL

Slide 40

Slide 40 text

BEHAVIOUR θi STRATEGIC PLAY [Buechel, B. In Networks, Topology and Dynamics. Springer Lecture Notes in Economic and Mathematical Systems Vol. 613, 95–109 (Springer, 2008)] Assumption: Homogeneous agents STRATEGIC NETWORK FORMATION MODEL