Slide 1

Slide 1 text

The Busy Beaver Game Christian Stigen @ Roxar AS 2016-04-27

Slide 2

Slide 2 text

Tibor Radó Bell Labs, 1962

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

Recap Turing Machines ● Tape ● Current State ● Current Symbol ● Next Symbol ● Next State ● Next Movement

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

State Symbol 0 Symbol 1 A B1R D0L B C1R F0R C C1L A1L D E0L Z1L E A1L B0R F C0R E0R

Slide 8

Slide 8 text

State Symbol 0 Symbol 1 A B1R D0L B C1R F0R C C1L A1L D E0L Z1L E A1L B0R F C0R E0R Write 1, Move Left, Go to Z (halt)

Slide 9

Slide 9 text

n Σ(n)

Slide 10

Slide 10 text

n Σ(n) 0 0

Slide 11

Slide 11 text

n Σ(n) 0 0 1 1

Slide 12

Slide 12 text

n Σ(n) 0 0 1 1 2

Slide 13

Slide 13 text

(4(n+1))2n

Slide 14

Slide 14 text

(4(n+1))2n Current state Current symbol New symbol x New direction New state + Halt

Slide 15

Slide 15 text

● Input: The current non-halting state (n possibilities) ● Input: The symbol in the current tape cell (2 possibilities) ● Output: The new symbol to write (2 possibilities) ● Output: The direction to move (2 possibilities) ● Output: The new state to transition to (n+1 possibilities, Z=halting state) ● Output = 2*2*(n+1), Output x Input = (4(n+1))2n (4(n+1))2n Current state Current symbol New symbol x New direction New state + Halt

Slide 16

Slide 16 text

Symbol 0 Symbol 1 State A State B

Slide 17

Slide 17 text

Symbol 0 Symbol 1 State A B1L State B Tape 0 1 0 0

Slide 18

Slide 18 text

Symbol 0 Symbol 1 State A B1L State B A1R Tape 0 1 0 0 1 1 0 0

Slide 19

Slide 19 text

Symbol 0 Symbol 1 State A B1L B1R State B A1R Tape 0 1 0 0 1 1 0 0 1 1 0 0

Slide 20

Slide 20 text

Symbol 0 Symbol 1 State A B1L B1R State B A1R Tape 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0

Slide 21

Slide 21 text

Symbol 0 Symbol 1 State A B1L B1R State B A1R Tape 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1

Slide 22

Slide 22 text

Symbol 0 Symbol 1 State A B1L B1R State B A1R Z1L Tape 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

Slide 23

Slide 23 text

Tape 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 Tape 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

Slide 24

Slide 24 text

Symbol 0 Symbol 1 State A B1R A1L State B A1R Z0L

Slide 25

Slide 25 text

n Σ(n) 0 0 1 1 2 4

Slide 26

Slide 26 text

n Σ(n) S(n) 0 0 0 1 1 1 2 4 6

Slide 27

Slide 27 text

A B1R D0L B C1R F0R C C1L A1L D E0L Z1L E A1L B0R F C0R E0R

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

n Σ(n) S(n) 0 0 0 1 1 1 2 4 6 3 6 21 4 13 107

Slide 30

Slide 30 text

n Σ(n) S(n) 0 0 0 1 1 1 2 4 6 3 6 21 4 13 107 5 >= 4098 >= 47 176 870 6 > 3.5x1018267 > 7.4 x 1036534

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

[...] the busy beaver functions offer an entirely new approach to solving pure mathematics problems. Many open problems in mathematics could in theory, but not in practice, be solved in a systematic way given the value of S(n) for a sufficiently large n.

Slide 41

Slide 41 text

● Σ(n) grows faster asymptotically than any other computable function (hence, it’s non-computable). ● Thus, it’s undecidable whether an arbitrary Turing machine is a Busy Beaver. ● Busy Beavers has implications for computability theory, the halting problem and complexity theory. It’s often used, among other tools, to prove and disprove stuff.

Slide 42

Slide 42 text

No content