Slide 1

Slide 1 text

NetSci 2015 3 June 2015, Zaragoza, Spain Measuring the Robustness of Real-world Spatio-temporal Networks Matthew J. Williams University of Birmingham & University College London [email protected] http://www.mattjw.net @voxmjw Mirco Musolesi University College London

Slide 2

Slide 2 text

What is the impact of failures in a spatio-temporal system?

Slide 3

Slide 3 text

What is the impact of failures in a spatio-temporal system?

Slide 4

Slide 4 text

What is the impact of failures in a spatio-temporal system?

Slide 5

Slide 5 text

Outline • Features of spatio-temporal networks • Spatio-temporal paths over networks • Measuring the performance of spatio-temporal networks • Robustness to random failure and systematic attack in real-world networks

Slide 6

Slide 6 text

• Spatial: Nodes and edges embedded in space • Mobile: Nodes may be mobile (time-varying location) • Temporal: Time-evolving topology • Non-instantaneous interaction: Node-to-node interactions are constrained by space and may be non-instantaneous Generalised Spatio-Temporal Networks

Slide 7

Slide 7 text

London Underground (Metro Rapid Transit System) US Domestic Flights Example: Public Transport Process over the network = Passenger transit

Slide 8

Slide 8 text

Representation of spatio- temporal networks

Slide 9

Slide 9 text

Representation t = 2 t = 1 t = 3 B C E D A B C E D A B C E D A 2 m/s 1 m/s 4 6 6 4 1 m/s 4 4 2 2 • Time-varying network • Encode propagation speed on each (directed) link • Possibly infinite for instantaneous transmission networks • Allows us to derive the interaction delay for a pair of nodes

Slide 10

Slide 10 text

t = 2 t = 1 t = 3 4 B C E D A B C E D A B C E D A 2 m/s 1 m/s 4 6 6 4 1 m/s 4 4 2 2 Representation time-varying... links & propagation speeds (e.g., transit speeds)

Slide 11

Slide 11 text

Representation time-varying... links & propagation speeds (e.g., transit speeds) time-varying... node positions (e.g., mobile phone comms) t = 2 t = 1 t = 3 4 B C E D A B C E D A B C E D A 2 m/s 1 m/s 4 6 6 4 1 m/s 4 4 2 2

Slide 12

Slide 12 text

Defining paths over spatio- temporal networks

Slide 13

Slide 13 text

Constrained Propagation • Model partial propagation between nodes at each timestep • Increment progress between two nodes according to their physical distance and the propagation speed of their link • Absence of a link ‘resets’ the process between two nodes 1 m/s 1 m/s ✘ t=1 t=2 t=3 t=4 1 sec 1 sec 1 sec 1 sec

Slide 14

Slide 14 text

Spatio-temporal Paths Constrained propagation Spatio-temporal path: Spatio-temporal paths Sequence of successful node- to-node propagation events

Slide 15

Slide 15 text

Spatio-temporal Paths Constrained propagation Spatio-temporal path: Spatio-temporal paths Sequence of successful node- to-node propagation events ( origin node, start time )

Slide 16

Slide 16 text

Spatio-temporal Paths Constrained propagation Spatio-temporal path: Spatio-temporal paths Sequence of successful node- to-node propagation events ( origin node, start time ) ( node v, time t ) ...

Slide 17

Slide 17 text

Spatio-temporal Paths Constrained propagation Spatio-temporal path: Spatio-temporal paths Sequence of successful node- to-node propagation events like temporal paths, except... ( origin node, start time ) ( node v, time t ) ...

Slide 18

Slide 18 text

Spatio-temporal Paths Properties: • Latency: time to reach destination from source • Spatial length: overall physical distance travelled • Number of hops Shortest spatio-temporal path: • (1) Minimum latency, and (2) Minimum spatial length Spatio-temporal path:

Slide 19

Slide 19 text

Measuring robustness of spatio-temporal networks

Slide 20

Slide 20 text

Robustness of Spatio-Temporal Networks • How does the system respond to node failure? • The behaviour of a spatio-temporal network can be measured in terms of its topological, temporal, and spatial structure

Slide 21

Slide 21 text

Measures of Performance Giant strong component size Largest number of mutually reachable nodes Relative loss in temporal efficiency Temporal efficiency: Average reciprocal temporal distance Lower efficiency means more “delay” in the network Relative loss in spatial efficiency Spatial efficiency: Average reciprocal spatial distance Lower efficiency means shortest paths traverse longer distances

Slide 22

Slide 22 text

Measures of Performance Giant strong component size Largest number of mutually reachable nodes Relative loss in temporal efficiency Temporal efficiency: Average reciprocal temporal distance Lower efficiency means more “delay” in the network Relative loss in spatial efficiency Spatial efficiency: Average reciprocal spatial distance Lower efficiency means shortest paths traverse longer distances 1 㱺 same efficiency as intact network 0 㱺 all disconnected Relative change: 1 㱺 same efficiency as intact network 0 㱺 all disconnected Relative change:

Slide 23

Slide 23 text

Real-world Networks C. Elegans (Nematode) Neural Network (279 neurons) London Underground Passenger Transit (270 stations) US Domestic Flights Passenger Transit (299 Airports) StudentLife Mobile Comms (Calls & SMS Logs) (22 Dartmouth Students)

Slide 24

Slide 24 text

Propagation Type Nodes Edges (Aggregate Network) Time- Varying Topology Mobile Nodes Median Propagation Speed Underground Passenger Transit 270 628 ✔ ✘ 8 m/s Flights (U.S. Domestic) Passenger Transit 299 3947 ✔ ✘ 152 m/s C. Elegans (Neural Network) Synaptic Transmission 279 2990 ✘ ✘ 0.44 mm/s StudentLife (Mobile Comms) Phone Calls & SMS 22 68 ✔ ✔ instantaneous Real-world Networks

Slide 25

Slide 25 text

Node Failure: Random • Random failure • Node deactivated with failure probability f 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand.

Slide 26

Slide 26 text

0.0 0.2 0.4 0.6 0.8 1.0 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Spatial Robustness R& UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Resilience to Random Failure Temporal Reachability (Giant Temporal Comp.) Spatial ↘ ↓ → 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS

Slide 27

Slide 27 text

0.0 0.2 0.4 0.6 0.8 1.0 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Spatial Robustness R& UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Resilience to Random Failure Temporal Reachability (Giant Temporal Comp.) Spatial ↘ ↓ → Underground highly fragile 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS

Slide 28

Slide 28 text

10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE PB Node Failure: Systematic • Random failure • Node deactivated with failure probability f • Systematic attacks • Path betweenness: Target nodes which support many shortest paths Objective: Dismantle the giant component • Betweenness efficiency: Target nodes which allow fast information flow Objective: Degrade the temporal efficiency; i.e., increase delay in the network • (Very effective attacks. Worst case behaviour. Require global knowledge.) 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand. 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE BE

Slide 29

Slide 29 text

10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S Err PB BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S Err PB BE 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Attack Tolerance: Giant Component 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE PB 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand. 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE PB 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand. Giant Component Giant Component

Slide 30

Slide 30 text

10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S Err PB BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S Err PB BE 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Attack Tolerance: Giant Component 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE PB 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand. 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE PB 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand. f = 5% to 45% resilient central region peripheries (total = 190 nodes) rapidly disconnected within 13 removals (f<4%) Giant Component Giant Component

Slide 31

Slide 31 text

10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S Err PB BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S Err PB BE 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Attack Tolerance: Giant Component f = 16% 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE PB 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand. 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE PB 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE BE 10 3 10 2 10 1 100 Removal Rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand. f = 5% to 45% resilient central region peripheries (total = 190 nodes) rapidly disconnected within 13 removals (f<4%) Giant Component Giant Component

Slide 32

Slide 32 text

10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Giant Component vs Temporal Efficiency Giant Component Temporal Robustness Giant Component Temporal Robustness

Slide 33

Slide 33 text

10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Giant Component vs Temporal Efficiency Giant Component Temporal Robustness Giant Component Temporal Robustness similar degradation

Slide 34

Slide 34 text

10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Giant Component vs Temporal Efficiency Giant Component Temporal Robustness Giant Component Temporal Robustness similar degradation resilient comp. while delay increases

Slide 35

Slide 35 text

10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Temporal Robustness R 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S Err PB BE 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS 0.0 0.2 0.4 0.6 0.8 1.0 Failure Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S UNDERGROUND STUDENTLIFE FLIGHTS C. ELEGANS Attacks on Giant Component and Temporal Efficiency 0.0 10.0 20.0 30.0 40.0 50.0 60.0 Temporal Efficiency E ⇥10 3 Err PB BE 0.2 0.4 0.6 0.8 1.0 Err PB path betweenness (PB): attacks reachability betweenness efficiency (BE): increases delay Giant Component Temporal Robustness

Slide 36

Slide 36 text

10 3 10 2 1 Removal R 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE PB 10 3 10 2 1 Removal R 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE BE 10 3 10 2 1 Removal R 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S Err PB TC ID OD BE Rand. Attacks on Giant Component and Temporal Efficiency 10 3 10 2 10 1 100 Removal Rate f 0.0 0.2 0.4 0.6 0.8 1.0 Giant Component Size S 10 3 10 2 10 1 100 Removal Rate f 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 Temporal Efficiency E ⇥10 3 component temporal 10 2 10 1 100 Removal Rate f 10 3 10 2 10 1 100 Removal Rate f 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 ⇥10 3 0 2 10 1 100 emoval Rate f 10 3 10 2 10 1 100 Removal Rate f 0.0 10.0 20.0 30.0 40.0 50.0 60.0 Temporal Efficiency E ⇥10 3 component temporal component temporal 10 3 10 2 10 1 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Giant Component Size S 10 3 10 2 10 1 100 Removal Rate f 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 Temporal Efficiency E ⇥10 3 component temporal

Slide 37

Slide 37 text

Summary I • Framework for modelling spatio-temporal systems as networks • Generalisation of temporal networks with spatially embedded nodes and paths that preserve space-time constraints • Avoids over-simplification due to aggregation (static network models) and instantaneous transmission (temporal network models)

Slide 38

Slide 38 text

Summary II • Systematic attacks can be designed to target different aspects of a network; e.g., topological (reachability) vs. temporal structure • Path betweenness attack – dismantles the giant component • Betweenness efficiency attack – increases delay

Slide 39

Slide 39 text

There are worse signalling stations to accidentally flood with concrete... Jan 2014 6x stations closed Temporal Robustness 89% Temporal Robustness 32% Worst-Case (BE Attack) Random Removal f = 6 / 270 Temporal Robustness 94%

Slide 40

Slide 40 text

Spatio-Temporal Complex Networks: Reachability, Centrality, and Robustness Matthew J. Williams University of Birmingham & University College London [email protected] http://www.mattjw.net @voxmjw Mirco Musolesi University College London Thanks for listening! http://arxiv.org/abs/1506.00627 @mircomusolesi

Slide 41

Slide 41 text

Attribution Globe “Earth - Illustration”. DonkeyHotey (Flickr CC). May 2011. https://www.flickr.com/photos/donkeyhotey/5679642871 C. Elegans “I: these are nematodes”. snickclunk (Flickr CC). July 2006. https://www.flickr.com/photos/snickclunk/200926410 Roulette Wheel “roulette”. eatsmilesleep (Flickr CC). August 2011. https://www.flickr.com/photos/45378259@N05/6050121954