Slide 8
Slide 8 text
3.2 ࣮ࡍʹߦΘΕͨղੳ ୈ 3 ষ Time interval ͷਪఆ
3.2.1 Estimation of the time interval distribution using doubly interval-censored likelihood
doubly interval-censored likelihood ҎԼͷ௨Γ.
L(Θ|D) =
∏
i
∫
ER,i
EL,i
∫
S R,i
S L,i
g(e) f(s − e)dsde (3.1)
͜͜Ͱ, f(t) Λͦͷ··࠾༻͢ΔͱબόΠΞε1͕͔͔ΔͨΊ, ӈଆஅ right truncation Λߟྀͯ͠ҎԼͷࣜΛ༻͍ͨ.
f′(s − e, e) =
f(s − e)
∫
T−e
0
re−ru
1 − e−ru
F(T − e − u)du
(3.2)
͜͜Ͱ, r ࢦؔత૿ՃͰ F(·) f(·) ͷྦྷੵؔ. T ࠷৽ͷ؍ଌ࣌ࠁ2Λࣔ͢.
ͯ͞, ैͬͯҎԼͷΑ͏ʹͳΔ. ·ͨ͜ͷͱ͖ΠϯςάϥϧҎԼΛ ιi
ͱͯ࣍͠ͷΑ͏ʹද͢.
L′(Θ|D) =
∏
i
∫
ER,i
EL,i
∫
S R,i
S L,i
g(e) f′(s − e, e)dsde
ιi
=
∫
ER,i
EL,i
∫
S R,i
S L,i
g(e) f′(s − e, e)dsde
(3.3)
S L,i
> ER,i
ͷͱ͖, s′ = s − e ͱஔͯ࣍͠ͷΑ͏ʹมܗͰ͖Δ.
ιi
=
∫
ER,i
EL,i
de g(e)
∫
S R,i
−e
S L,i
−e
f′(s′, e)ds′
=
∫
ER,i
EL,i
g(e)
{
F′(S R,i
− e, e) − F′(S L,i
− e, e)
}
de
(3.4)
ER,i
> S L,i
> EL,i
Ͱ͋Δͱ͖, ҎԼͷΑ͏ʹͳΔ.
ιi
=
∫
S l,i
EL,i
g(e){F′(SR,i
− e, e) − F′(S L,i
− e, e)}de
+
∫
ER,i
S L,i
g(e)F′(S R,i
− e, e)de
(3.5)
࠷ޙʹ, EL,i
> S L,i
Ͱ͋Δͱ͖, ҎԼͷΑ͏ʹͳΔ.
ιi
=
∫
ER,i
EL,i
g(e)F′(SR,i
− e, e)de (3.6)
͜ͷΑ͏ʹ߹͚Λͯ͠ time interval ΛͦΕͧΕٻΊͨ.3 f(s − e) ΨϯϚ, ରਖ਼ن, ϫΠϒϧΛߟ͑ͨ.
3.2.2 Estimation of the time interval distribution using Bayesian framework
Bayes ਪఆʹΑΓ time interval distribution ΛٻΊΔ. ࣄલରਖ਼ن, ΨϯϚ, ϫΠϒϧΛߟ͑Ϛϧίϑ࿈ϞϯςΧϧϩ๏
(MCMC)4ʹΑͬͯϞϯςΧϧϩੵ͔Βඇஅରʹର͢Δࣄޙ༧ଌ (time interval distribution) Λਪఆ͢Δ. ͳ͓, ରਖ਼نͱ
ϫΠϒϧͲͪΒඪ४ਖ਼نʹै͏. ΨϯϚ shape parameter ฏۉ 3, ඪ४ภࠩ 5 ͷਖ਼نʹै͍, inverse scale parameter ,
location parameter Λ 0, scale parameter Λ 5.0 ʹͱΔίʔγʔͱ͠֊ϕΠζΛߟ͑ͨ.5ͳ͓, ࣄલͷબ Stan developer community
ʹΑΔਪ6ʹैͬͨ.
·ͨ, times of exposure ͱ illness onset ͷࣄલҎԼͷΑ͏ʹఆࣜԽͨ͠.
ei
= EL,i
+ (ER,i
− EL,i
)˜
ei
si
= ˆ
S L,i
+ (S R,i
− ˆ
S L,i
)˜
si
(3.7)
͜ͷͱ͖, ei
> S L,i
ͳΒ ˆ
S L,i
= ei
, ei
= S L,i
ͳΒ ˆ
S L,i
= S L,i
Ͱ͋Δ. ei
< S L,i
ͷͱ͖ ˜
ei
ͱ˜
si
࣍ͷʹै͏.
˜
ei
∼ nomal(mean = 0.5, S D = 0.5), ˜
si
∼ nomal(mean = 0.5, S D = 0.5)
1ੜଘ࣌ؒղੳͷ. ଧͪΓ censoring (அ truncation) ͕ߟྀ͞ΕΔ͖ิਖ਼Ͱ͢. ࠓճͷ right truncation જ෬ظ͕͍ؒ߹ʹΤϯυϙΠϯτͷઃఆʹΑΓ؍ଌ͞Εͣ,
population of interest ͱ sampled population ͕ҟͳͬͯ͠·͍ selection bias ͕ൃੜ͢Δঢ়ଶΛ͍͏. Inverse probability weighting methods for Cox regression with rightʖtruncated
data (https://doi.org/10.1111/biom.13162).
2͜ͷͱ͖ 2020 1 ݄ 31 .
3࣮ࡍͷσʔλΛ༻͍ͨܭࢉ R Λ༻ͨ͠.
4No U-Turn Sampler(NUTS) Λ࣮ͨ͠ Stan ʹΑΓཚੜߦΘΕͨ.
5Ұൠͱͯ͠֊ϕΠζ࠷๏͕͘͠ AIC ͰධՁͣ͠Β͍ͷͰ, MCMC Λ༻͍ͯ WAIC Λߟ͑Δࣄ͕ଟ͍.
6Stan developer team. Prior choice recommendations. https://github.com/stan- dev/stan/wiki/Prior-Choice-Recommendations. Assessed 6 February 2020.
7