χϡʔϥϧ༁ಛ༗ͷ
͕͍͔ͭ͋͘Γ·͢
| ະޠͷѻ͍
→the largest UNK in the world
| Under-translation, over-translation
→in the history of the history of the history of the
…
| શવؔͷͳ͍୯ޠΛग़ྗ
3
Sato et al., Japanese-English Machine
Translation of Recipe Texts. WAT 2016.
Slide 4
Slide 4 text
NMT ಛ༗ͷޡΓͷΤϥʔ
ੳ؆୯Ͱ͋Γ·ͤ
Μ
ݪ
จ
খܕ ߕ֪ ྨ ͯ㿆 , Ξϛ ྨ ͷ ΞΧΠιΞϛ , ϫϨΧ
ϥ ྨ ͷ χοϙϯϫϨΧϥ ͱ πΧ㿆ϧϫϨΧϥ ҵ
ݝ ͯ㿆 ॳΊͯ ֬ೝ ͞ Ε ͨ ɻ
N
M
T
in small crustaceans , and of
and were con- firmed for the first time in
Ibaraki Prefecture .
ࢀ
র
༁
among the small-type Crustacea , Paracanthomysis
hispida of Mysidae , and Caprella japonica and C.
tsugarensis of Caprellidae were confirmed for the
first time in Ibaraki Prefecture .
4
Matsumura and Komachi. Tokyo Metropolitan University
Neural Machine Translation System for WAT 2017. WAT 2017.
Slide 5
Slide 5 text
Ξςϯγϣϯʹཱ͕ͭ
NMT ͷσόοάʹෆे
5
Matsumura et al., English-Japanese Neural Machine
Translation with Encoder-Decoder-Reconstructor. arXiv 2017.
͔͜͜Βχϡʔϥϧ༁ಛ༗ͷ
ͷΤϥʔੳʢ࠶ܝʣ
| ະޠͷѻ͍
→the largest UNK in the world
| Under-translation, over-translation
→in the history of the history of the history of the
…
| શવؔͷͳ͍୯ޠΛग़ྗ
16
Sato et al., Japanese-English Machine
Translation of Recipe Texts. WAT 2016.
ࢀߟจݙ
| Ding et al. Visualizing and Understanding
Neural Machine Translation. ACL 2017.
| Bach et al. On pixel-wise explanations for
non-linear classifier decisions by layer-wise
relevance propagation. PLoS ONE 2015.
| Li et al. Visualizing and understanding neural
models in NLP. NAACL 2016.
| Tu et al. Context gates for neural machine
translations. ACL 2017.
29
Slide 30
Slide 30 text
ʢटେͷNMTʣؔ࿈จ
ݙ
| Matsumura et al. English-Japanese Neural
Machine Translation with Encoder-Decoder-
Reconstructor. arXiv 2017.
| Sato et al. Japanese-English Machine
Translation of Recipe Texts. WAT 2016.
| Yamagishi et al. Improving Japanese-to-
English Neural Machine Translation by Voice
Prediction. IJCNLP 2017.
| Matsumura and Komachi. Tokyo
Metropolitan University Neural Machine
Translation System for WAT 2017. WAT 2017. 30