Slide 1

Slide 1 text

生物学的同等性試験 検出力の計算法 2020/11/24 Ver. 1.0

Slide 2

Slide 2 text

信頼区間の計算 試験・標準製剤の平均値の比が0.80-1.25のとき同等 • パラメータが対数正規分布すると仮定する • 90%信頼区間で同等性評価を行う • 有意水準5%の片側検定を2つ行ってもよい 第二の過誤をコントロールするため、例数設計が必要

Slide 3

Slide 3 text

第一の過誤と第二の過誤 過誤には2種類がある 帰無仮説を 棄却する 棄却しない 実際に 差がある 有意な差 棄却しなかったが 実際には差がある 実際に 差がない 棄却したが 実際には差がない 差があるとは言えない • 青を第一の過誤(偽陽性)と呼ぶ • オレンジを第二の過誤(偽陰性)と呼ぶ

Slide 4

Slide 4 text

検出力 第二の過誤を除き、有意差を検出できる確率のこと (偽陰性) 𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 検出力は0.8以上が好ましい*とされる *特に理由があるわけではない power: 検出力、β: 第二の過誤の起こる確率

Slide 5

Slide 5 text

𝑃𝑜𝑤𝑒𝑟 ∆0 = 𝑃 log 0.8 − ∆0 𝜎2/𝑛 + 𝑡2𝑛−2 0.05 ≤ ∆ − ∆0 𝜎2 𝑛 ≤ log 1.25 − ∆0 𝜎2 𝑛 − 𝑡2𝑛−2 (0.05) 同等性試験における検出力の計算 2つの片側t分布の同時確率から計算する Zパラメータ Zパラメータはt分布するので、確率を計算できる *https://www.jstage.jst.go.jp/article/jscpt1970/31/6/31_6_715/_pdf

Slide 6

Slide 6 text

例数設計: 検出力(Power)からの計算 t分布の範囲から計算する log 0.8 − ∆0 𝜎2/𝑛 + 𝑡2𝑛−2 0.05 log 1.25 − ∆0 𝜎2 𝑛 − 𝑡2𝑛−2 (0.05) この面積の割合がPower

Slide 7

Slide 7 text

Rでの計算法 Power_identity(例数、比の平均値、比の標準偏差) で計算可能 正確な計算値とは異なる

Slide 8

Slide 8 text

正確な検出力の計算方法 非心t分布の同時確率から計算する 非心度 = 0 非心度 = 1 非心度 = 2 非心度 = 3 非心度に従い、t分布は左右にずれる

Slide 9

Slide 9 text

非心t分布の原因 2x2クロスオーバーでは2つのt検定の同時確率を求める 𝐻0 : 𝜇𝑡 𝜇𝑟 < 𝑙𝑜𝑔 1.25 or 𝜇𝑡 𝜇𝑟 > 𝑙𝑜𝑔 0.8 𝐻1 : 𝑙𝑜𝑔 0.8 < 𝜇𝑡 𝜇𝑟 < 𝑙𝑜𝑔 1.25 H 0 : 帰無仮説、H 1 : 対立仮説、μ t : 試験製剤の値、 μ r : 標準製剤の値 これを満たすための同等性の条件を検証する *http://www.imsbio.co.jp/RGM-files/R_CC/download/PowerTOST/inst/doc/BE_power_sample_size_excerpt.pdf

Slide 10

Slide 10 text

𝑡1 = 𝑋𝑇 − 𝑋𝑅 − 𝑙𝑜𝑔 0.8 𝑠𝑒 Τ 2 𝑛 ≥ 𝑡 1 − 𝛼, 𝑛 − 2 同等性の条件 𝑡2 = 𝑋𝑇 − 𝑋𝑅 − 𝑙𝑜𝑔 1.25 𝑠𝑒 Τ 2 𝑛 ≤ −𝑡 1 − 𝛼, 𝑛 − 2 以下を同時に満たすことが同等性の条件となる s e : 分散分析の残差平均二条和から計算するパラメータ、t(1-α,n-2): 有意水準1- α、自由度n-2のt分布 𝑋𝑇 、𝑋𝑅 : 対数変換した試験・標準製剤のパラメータ オレンジで囲んだ部分が非心度-log(0.8)、-log(1.25)の 非心t分布を取る

Slide 11

Slide 11 text

検出力の計算 同等性が確保された上で、以下が検出力となる 𝑃𝑜𝑤𝑒𝑟 = 𝑃𝑟𝑜𝑏 𝑡1 ≥ 𝑡 1 − 𝛼, 𝑛 − 2 ∩ 𝑡2 ≤ 𝑡 1 − 𝛼, 𝑛 − 2 𝐵𝐸 *∩は論理積(A∩BはAかつB)、Prob(A|B)はBの条件を満たした上でAが成り立つ確率 2変量非心t分布は3次元配置になる。検出力は2つの積分値の差(OwenのQ関数)で計算できる これを満たすt 1 、t 2 が二変量非心t分布を取る

Slide 12

Slide 12 text

2変量非心t分布の積分からの計算法 検出力の計算は以下の式で表される 𝑃𝑜𝑤𝑒𝑟 = 𝑄𝑑𝑓 −𝑡 1−𝛼,𝑑𝑓 , 𝛿2 ; 0, 𝑅 − 𝑄𝑑𝑓 𝑡 1−𝛼,𝑑𝑓 , 𝛿1 ; 0, 𝑅 Q df : 自由度dfのOwenのQ関数(積分計算の関数)、δ: 複雑なので以降のページで示す (基本的にはZパラメータ)、R: 同じく複雑なので以降のページに示す 正直これだけではよくわからない

Slide 13

Slide 13 text

OwenのQ関数 2変量非心t分布の積分を示す関数 𝑄𝑣 𝑡, 𝛿; 𝑎, 𝑏 = 2𝜋 𝛤 𝑣 2 2൫𝑣−2 Τ 2 න 𝑎 𝑏 𝛷 𝑡 ∙ 𝑥 𝑣 − 𝛿 ∙ 𝑥𝑣−1 ∙ 𝜑 𝑥 ∙ 𝑑𝑥 𝛤: ガンマ関数、Φ、φ: 2変量同時正規分布の確率密度関数 中身を見てもよくわからないが、積分を計算している *RではpowerTOSTパッケージのintegrate関数で計算できるらしい ガンマ関数https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%B3%E3%83%9E%E9%96%A2%E6%95%B0

Slide 14

Slide 14 text

δとR 𝛿1 = 𝑙𝑜𝑔 𝛩0 − 𝑙𝑜𝑔 0.8 𝑠𝑒 Τ 2 𝑛 𝛿2 = 𝑙𝑜𝑔 𝛩0 − 𝑙𝑜𝑔 1.25 𝑠𝑒 Τ 2 𝑛 𝑅 = 𝑑𝑓 𝛿1 − 𝛿2 2 ∙ 𝑡 1 − 𝛼, 𝑑𝑓 以下の式で計算する 𝛩 0 : パラメータの比の対数、 df: 自由度(被験者数) 上2つはZパラメータの変形、Rは謎パラメータ

Slide 15

Slide 15 text

簡素化1: 非心t分布での簡素化 Q関数を使う方法は複雑なので、簡素化する 𝑃𝑜𝑤𝑒𝑟 ≈ 𝑝𝑡 −𝑡 1 − 𝛼, 𝑛 − 2 , 𝑛 − 2, 𝛿2 − 𝑝𝑡 𝑡 1 − 𝛼, 𝑛 − 2 , 𝑛 − 2, 𝛿1 pt:(2変量ではない)非心t分布の積分値、 δは非心度 これはRで計算可能

Slide 16

Slide 16 text

簡素化2: t分布での簡素化 非心t分布はExcelなどでは計算できないので、t分布を使う 𝑃𝑜𝑤𝑒𝑟 ≈ 𝑝𝑡 −𝛿2 − 𝑡 1 − 𝛼, 𝑛 − 2 , 𝑛 − 2, − 𝑝𝑡 𝑡 1 − 𝛼, 𝑛 − 2 − 𝛿1 , 𝑛 − 2, これは5ページの以下の式と同じ 𝑃𝑜𝑤𝑒𝑟 ∆0 = 𝑃 log 0.8 − ∆0 𝜎2/𝑛 + 𝑡2𝑛−2 0.05 ≤ ∆ − ∆0 𝜎2 𝑛 ≤ log 1.25 − ∆0 𝜎2 𝑛 − 𝑡2𝑛−2 (0.05) *上の式では標準製剤+試験製剤のデータ数をn、下では被験者数をnとしているので、実際の自由度は同じ