Slide 1

Slide 1 text

Henk Boelman Cloud Advocate @ Microsoft Train your own model using Azure Machine Learning HenkBoelman.com @hboelman

Slide 2

Slide 2 text

Machine Learning Ability to learn without being explicitly programmed.

Slide 3

Slide 3 text

Programming Algorithm Data Answers

Slide 4

Slide 4 text

Machine Learning Algorithm Data Answers

Slide 5

Slide 5 text

Machine Learning Model Data Answers

Slide 6

Slide 6 text

Machine Learning Model Data Answers

Slide 7

Slide 7 text

Machine Learning Predictions Data Model Data Answers

Slide 8

Slide 8 text

Ask a sharp question Collect the data Prepare the data Select the algorithm Train the model Use the answer The data science process

Slide 9

Slide 9 text

Azure Machine Learning A fully-managed cloud service that enables you to easily build, deploy, and share predictive analytics solutions.

Slide 10

Slide 10 text

What number is it?

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

Sophisticated pretrained models To simplify solution development Azure Databricks Machine Learning VMs Popular frameworks To build advanced deep learning solutions TensorFlow Keras Pytorch Onnx Azure Machine Learning Language Speech … Azure Search Vision On-premises Cloud Edge Productive services To empower data science and development teams Powerful infrastructure To accelerate deep learning Flexible deployment To deploy and manage models on intelligent cloud and edge Machine Learning on Azure Cognitive Services

Slide 13

Slide 13 text

Prepare your environment Experiment with your model & data Deploy Your model into production

Slide 14

Slide 14 text

Step 1: Prepare your environment

Slide 15

Slide 15 text

Setup your environment VS Code Azure Notebooks Azure Portal

Slide 16

Slide 16 text

Azure Notebook / Jupyter Notebook

Slide 17

Slide 17 text

Create a workspace ws = Workspace.create( name='', subscription_id='', resource_group='', location='westeurope') ws.write_config() ws = Workspace.from_config() Create a workspace

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

Datasets – registered, known data sets Experiments – Training runs Models – Registered, versioned models Endpoints: Real-time Endpoints – Deployed model endpoints Pipeline Endpoints – Training workflows Compute – Managed compute Datastores – Connections to data Azure Machine Learning Service

Slide 20

Slide 20 text

Create Compute cfg = AmlCompute.provisioning_configuration( vm_size='STANDARD_NC6', min_nodes=1, max_nodes=6) cc = ComputeTarget.create(ws, '', cfg) Create a workspace Create compute

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

Demo: Setup your workspace Create a workspace Create compute Setup storage

Slide 23

Slide 23 text

Step 1 Prepare your environment Create a workspace Create compute Setup storage

Slide 24

Slide 24 text

Step 2: Experiment with your model & data

Slide 25

Slide 25 text

Create an experiment exp = Experiment(workspace=ws, name=“”) Create an Experiment

Slide 26

Slide 26 text

Create a training file Create an Experiment Create a training file

Slide 27

Slide 27 text

Create an estimator params = {'--data-folder': ws.get_default_datastore().as_mount()} estimator = TensorFlow( source_directory = script_folder, script_params = params, compute_target = computeCluster, entry_script = 'train.py’, use_gpu = True, conda_packages = ['scikit-learn','keras','opencv’], framework_version='1.10') Create an Experiment Create a training file Create an estimator

Slide 28

Slide 28 text

Submit the experiment to the cluster run = exp.submit(estimator) RunDetails(run).show() Create an Experiment Create a training file Submit to the AI cluster Create an estimator

Slide 29

Slide 29 text

Create an Experiment Create a training file Submit to the AI cluster Create an estimator Demo: Creating and run an experiment

Slide 30

Slide 30 text

Azure Notebook Compute Target Experiment Docker Image Data store 1. Snapshot folder and send to experiment 2. create docker image 3. Deploy docker and snapshot to compute 4. Mount datastore to compute 6. Stream stdout, logs, metrics 5. Launch the script 7. Copy over outputs

Slide 31

Slide 31 text

Register the model model = Model.register( ws, model_name=‘My Model Name', model_path='./savedmodel', description='My cool Model') Create an Experiment Create a training file Submit to the AI cluster Create an estimator Register the model

Slide 32

Slide 32 text

Create an Experiment Create a training file Submit to the AI cluster Create an estimator Register the model Demo: Register and test the model

Slide 33

Slide 33 text

Step 3: Deploy your model into production

Slide 34

Slide 34 text

AMLS to deploy The Model Score.py Environment file Docker Image

Slide 35

Slide 35 text

Score.py %%writefile score.py from azureml.core.model import Model def init(): model_root = Model.get_model_path('MyModel’) loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights(model_file_h5) def run(raw_data): url = json.loads(raw_data)['url’] image_data = cv2.resize(image_data,(96,96)) predicted_labels = loaded_model.predict(data1) return json.dumps(predicted_labels)

Slide 36

Slide 36 text

Environment File from azureml.core.runconfig import CondaDependencies cd = CondaDependencies.create() cd.add_conda_package('keras==2.2.2') cd.add_conda_package('opencv') cd.add_tensorflow_conda_package() cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')

Slide 37

Slide 37 text

Create the image image_config = ContainerImage.image_configuration( runtime= "python", execution_script="score.py", conda_file="myenv.yml") image = Image.create(name = “my-image", models = [model], image_config = image_config, workspace = ws)

Slide 38

Slide 38 text

Deployment using AMLS

Slide 39

Slide 39 text

Deploy to ACI aciconfig = AciWebservice.deploy_configuration( cpu_cores = 1, memory_gb = 2) aci_service = Webservice.deploy_from_image( deployment_config = aciconfig, image = image, name = ‘', workspace = ws)

Slide 40

Slide 40 text

Demo: Deploy to ACI

Slide 41

Slide 41 text

Prepare Data Register and Manage Model Train & Test Model Build Image … Build model (your favorite IDE) Deploy Service Monitor Model Prepare Experiment Deploy

Slide 42

Slide 42 text

@hboelman github.com/hnky henkboelman.com Thank you! Read more on: henkboelman.com Aka.ms/AI4DEV02-amls-basics