Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
Ray in 2023 Robert Nishihara
Slide 2
Slide 2 text
No content
Slide 3
Slide 3 text
12x 50% 40% 10x 5x 30% Why Ray? faster cheaper cheaper cheaper faster cheaper
Slide 4
Slide 4 text
As AI capabilities have grown, so have the challenges Scale Future readiness Cost These are the challenges Ray was built for
Slide 5
Slide 5 text
Anyscale Endpoints - fine-tuning Llama-2-7B GPT-4 fine-tuned 86% 3% 78% Superior task-specific performance at 1/300th the cost of GPT-4!
Slide 6
Slide 6 text
Spark SageMaker $0 $20 $40 $60 $3.5 $7.3 $57 AWS Cost to process 1M images $2.5 Batch inference - costs
Slide 7
Slide 7 text
Anyscale Endpoints Cost efficient LLM inference Anyscale Endpoints Single GPU optimizations Multi-GPU modeling Inference server Autoscaling Multi-region, multi-cloud $1 / million tokens (Llama-2 70B)
Slide 8
Slide 8 text
No content
Slide 9
Slide 9 text
No content
Slide 10
Slide 10 text
No content