Slide 1

Slide 1 text

Deep Learning for Health and Life Sciences

Slide 2

Slide 2 text

Deep Learning for the Health and Life Sciences Valerio Maggio, PhD @l er i o m a g g i o v ma g g i o@a n a c o n d a .c o m

Slide 3

Slide 3 text

m e p u n Who? B a c k g r o un d i n C S P h D i n Ma c h i n e L ea r n i n g R e s e a r c h : M L /D L f o r B i o Me d i c i n e P y t h o n G e e k 
 D e v e l o p e r A d v o c a te _a t _ An a c o n da a l s o m e

Slide 4

Slide 4 text

Machine Learning “M a c h i n e l e a r n i n g i s t h e s ci e nc e (a nd a r t) o f p r o g ra m m i n g c o m p ut e rs so th e y c a n l e a rn fr o m d a t a” A u r él ie n G ér o n , Ha n ds -o n M a c h i n e L e a r n i n g w i t h Sc i ki t-L e a r n a nd T e n s o r Fl o w S o u r ce : bi t.l y /m l -s i m p l e -d ef i ni t i o n “(m l ) fo c us e s o n t e a c h i n g c o m p ut e rs h o w t o l e a r n w i t h o u t t h e n ee d t o b e p r o g r a m m e d f o r s p ec i f i c t a sk s” S. P a l & A . G u l l i , D e e p L e a r ni n g w it h K e ra s

Slide 5

Slide 5 text

Machine Learning M a c h i n e l e a r n i n g t e a c h es ma c h i n es h o w t o c a rr y o u t t a s k s b y t h e m s e l ve s. I t i s t h a t s i mp l e . T h e c o m p l e x i t y c o m e s w it h t h e d et a il s L o u i s P ed r o C o e l h o , B u i l d i ng Ma c h i n e L ea r ni n g S y s t e m s w i t h P y t h o n (a n d th a t ’s p r o b a bl y o n e o f t h e re a so n w h y y o u ’r e h e r e :)

Slide 6

Slide 6 text

The (Machine) Learning is about DATA D a t a a r e o ne o f th e m o s t i m p o r t a n t p a rt o f a m l s o l u ti o n I m p o rt a n c e: Da t a >> Mo d e l ? L e a r ni n g b y e xa m p l e s D a t a P r e p a ra t i o n i s c r uc i a l ! d a t a a l g o r i t h m s

Slide 7

Slide 7 text

BioMedicine: another data case ? C o n t e m p o r a ry Li f e S c i e n c e i s a b o u t d a t a r ec e nt a d v a n c e s i n s e q u e n ci n g t ec h s a nd i n s t r u m e n t s (e.g. “b io -i m a g e s ”) h u g e d a ta s e t s g e ne r a t e d a t i n c r e d i bl e p a ce f ro m h u m a n o b se r v a t i o n t o d a ta a n a l y s is c h e m o -i nf o rm a ti c s (d r u g d i sc o v e r y ) R e s e a r c h I m p a ct —> S o c ia l a n d H u m a n I mp a c t

Slide 8

Slide 8 text

Why Deep Learning, btw? S u b s et o f M L w / v e r y s pe c if i c m o d e l : (D e e p?) N e u ra l N e tw o r k s S ta t e o f t h e a r t T h e o r y ’50 / ’80 h w a cc e l e r a t i o n t o tr a i n (~n ew ) l e a rn i ng st r u c t ur e + c o m po s a b i l i t y (2018/23)

Slide 9

Slide 9 text

Ml / Dl basics in a NutShell

Slide 10

Slide 10 text

f e a t ur e s l a b e l s (r a w ) d a t a M L /D L 
 M o d e l T r a i n i n g T ra i ne d 
 M o d e l (u n s e e n ) d a t a T e s t P r e di c ti o n s Supervised learning s up e rv i si o n

Slide 11

Slide 11 text

f e a t ur e s l a b e l s (r a w ) d a t a M L /D L 
 M o d e l T r a i n i n g T ra i ne d 
 M o d e l (u n s e e n ) d a t a T e s t S i m i l a r i t i e s /l i k e l i h o o d UnSupervised learning

Slide 12

Slide 12 text

l a b e l s (r a w ) d a t a D L 
 M o d e l T r a i n i n g T ra i ne d 
 M o d e l (u n s e e n ) d a t a T e s t P r e di c ti o n s s up e rv i si o n f e a t ur e s Deep 
 Supervised learning

Slide 13

Slide 13 text

What Deep Learning is about…

Slide 14

Slide 14 text

Neural Networks A m u l t i-l a y e r f e e d-f o r w a r d n e ur a l n et w o r k c o mp o se d b y m u l t i pl e 
 d en s e (a.k.a. f u l l y -c o n n ec t ed ) h i d d e n l a y e r s a nd no n-l in e a r t r a n s f o rm a t i o ns

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

More details…

Slide 17

Slide 17 text

More details… ReLu | sigmoid | tanh

Slide 18

Slide 18 text

More details… Repeat for each layer…

Slide 19

Slide 19 text

More details… Image Classification Task

Slide 20

Slide 20 text

More details… S u m m a r y: 
 
 A (b a s i c ) D e e p N e u r a l N e t w o r k i s : • C o m p o s e d o f m u l t i p l e l a y e rs ; • E a c h L a y e r i s f (W x +b): • L in e a r m o d e l -> W x +b • f() is a n o n -l i n e a r f u n c t i o n G o a l o f t h e l ea r ni n g t a s k: fi n d i n g t h e va l ue s o f a l l 
 W s a n d bs (i.e. m o d e l p a r a m e te r s ) s o t h a t t h e c l a s s i f ic a ti o n e rr o r w o u l d b e m in i m u m.

Slide 21

Slide 21 text

Supervised Learning Loop l a b e l s (r a w ) d a t a M o d e l P a r a m e t e r s L o s s l o s s p r e d ic t i o n s

Slide 22

Slide 22 text

Supervised Training Loop breakdown & terminology (r a w ) D a t a - a .k.a. O b s e r v a t i o n s / I n p u t 
 I te m s a b o u t w h i c h w e w a n t t o p r e d i c t s o m e t h i n g. W e u s u a l l y w i l l d en o te o b s e r v a t i o n w i t h x . L a b e l s - a .k.a. T a r g e t s (i.e. G r o u n d T r u t h) 
 L a b el s c o rr e s p o n d i n g t o o b s e r v a t i o n s. T h e s e a r e u s u a l l y t h e t h i n g s b e i n g p re d ic t e d . F o l l o w i n g s t a n d a r d n o t a t i o n s i n M L /D L , w e w i l l u s e y t o r e f e r t o t h e s e . M o d e l f(x) = ˆy 
 A m a th e m a t i c a e x p r e s s i o n o r a f u n c t i o n t h a t t a k e s a n o b s e r v a t i o n x a n d p re d ic t s t h e v a l u e o f i t s t a r g e t l a b e l . P r e d i c t i o n s - a .k.a. Es t i m a t e s: V a l u e s o f t h e T a r g e t s g e n e r a t e d b y t h e m o d e l - u s u a l l y r e f e r r e d t o a s ˆy P a r a m e t e r s - a .k.a. W e i g h t s (i n D L t e r m i n o l o g y ) 
 P a r a m e t e r s o f t h e M o d e l . W e w i l l r e f e r t o t h e m u s i n g t h e w. L o s s F u n c t i o n L (y, ˆy): 
 F u n c t i o n t h a t c o m p a r e s h o w f a r o f f a p r e d i c t i o n i s f ro m i t s t a r g e t f o r o bs e r v a t i o n s i n t h e t r a i n i n g d a t a . T h e l o s s f u n c t i o n a s s i g n s a s c a l a r r e a l v a l u e c a l l e d t h e l o s s . T h e l o w e r t h e v a l u e o f t h e l o s s , t h e b e t t e r t h e m o d e l i s p r e d i c t i n g. T h e L o s s i s u s u a l l y r e f e r r e d t o a s L S o u r c e :D. R a o e t a l. - N a t ur a l L a n g u a g e P r o c e s s i n g w i th Py T o r c h , O ’R e i l l y 2019

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

Deep Learning in 
 Bioinformatics and BioMedicine A f e w e xa m p l e s

Slide 25

Slide 25 text

Diabetic Retinopathy from fundus retinal images DeepDR

Slide 26

Slide 26 text

DL for Digital Pathology Digital Pathology (Pipeline) Detect Tissue Region Transfer Learning

Slide 27

Slide 27 text

DL for Digital Pathology Transfer Learning

Slide 28

Slide 28 text

BioMedical Image Segmentation U-Net Note: AutoEncoder Model (Unsupervised Learning)

Slide 29

Slide 29 text

Toxicity Prediction using Deep Learning ToX21 Dataset DeepTox Pipeline

Slide 30

Slide 30 text

Now it’s time to switch to notebooks…

Slide 31

Slide 31 text

Materials and Practical R e p o si t o r y: 
 h t tp s://g i t h ub .c o m /l er i o m a gg i o /d ee p-l ea r ni n g -c l a s s m y b i nd e r