Slide 1

Slide 1 text

Digitale Ökosysteme, Datenökosysteme, Plattformen im Gesundheitssystem — Dr. Matthias Naab Zertifikatskurs 22.01 (CAS Healthcare Management MiG) 30.03.2022

Slide 2

Slide 2 text

Technology changes Media & Data with Digital Products Technology changes Markets & Industries with Digital Processes Technology changes Economy & Society with Digital Business Models Digitization Digital Transformation Digitalization Digital Disruption

Slide 3

Slide 3 text

New and innovative Services & Products Data-Driven Business Models Cross-Domain Business Models Digital Business Processes Offshore- Development & Operation Business Process Reengineering Radical Innovation Incremental Innovation Efficiency Optimization & Cost Reduction New Value Creation Digitization | Digitalization | Digital Transformation Digital Ecosystems

Slide 4

Slide 4 text

© Fraunhofer IESE 20

Slide 5

Slide 5 text

© Fraunhofer IESE 23

Slide 6

Slide 6 text

© Fraunhofer IESE 24 Digital Ecosystems ◼ Socio-technical system (organizations, people, digital systems, relationships) ◼ Independent participants ◼ Collaborating to generate mutual benefit ◼ Collaboration based on ecosystem service, offered by ecosystem initiator, provided through digital platform Participants

Slide 7

Slide 7 text

© Fraunhofer IESE 25 Ecosystem Service ◼ Collaboration based on ecosystem service ◼ Generates core benefit of the ecosystem ◼ Provided by ecosystem initiator ◼ Provided purely digitally Ecosystem Service

Slide 8

Slide 8 text

Airbnb Lodging offers brokering of private accommodations provided by private hosts for travelers

Slide 9

Slide 9 text

Ebay Marketplace offers brokering of any kind of goods provided by sellers for buyers

Slide 10

Slide 10 text

AVIATAR offers brokering of maintenance data provided by aircraft component manufactures for airlines

Slide 11

Slide 11 text

Caruso Dataplace offers brokering of vehicle telematics data provided by OEMs for automotive aftermarket service providers

Slide 12

Slide 12 text

© Fraunhofer IESE 46 offers brokering of provided by for Digital Ecosystem Service Description Template

Slide 13

Slide 13 text

© Fraunhofer IESE 48 Digital Platform ◼ Core technical aspect in digital ecosystem ◼ Realize ecosystem service and manifest ecosystem rules ◼ Partners directly use the digital platform ◼ Additional supporting features (e.g. payment, trusteeship, security, management of legal relationships, standardization, rating, …) Digital Platform

Slide 14

Slide 14 text

“ ”

Slide 15

Slide 15 text

© Fraunhofer IESE 50 Technology Platform Digital (Ecosystem) Platform Application / Business Logic Technology / Infrastructure Hardware Software Operated by Developer or Customer Externally Operated / as-a-Service Hardware Platform IaaS Platform Operating System Platform Runtime Environment Platform Runtime Environment Platform with Business Logic PaaS Platform PaaS Platform with Business Logic Marketplace Platform On-Demand Service Platform Communication / Interaction Platform Data Harvesting Platform Content Crowdsourcing Platform Content Distribution Platform Platform Economy Platform “Use the platform to build and run software on top” “Use the platform to consume its service and participate in the ecosystem”

Slide 16

Slide 16 text

© Fraunhofer IESE 51 1 Digital (Ecosystem) Platform Application / Business Logic Technology / Infrastructure Hardware Software Operated by Developer or Customer Externally Operated / as-a-Service Hardware Platform IaaS Platform Operating System Platform Runtime Environment Platform Runtime Environment Platform with Business Logic PaaS Platform PaaS Platform with Business Logic Marketplace Platform On-Demand Service Platform Communication / Interaction Platform Data Harvesting Platform Content Crowdsourcing Platform Content Distribution Platform Platform Economy Platform “Use the platform to build and run software on top” “Use the platform to consume its service and participate in the ecosystem” Software Ecosystem Platform Application (potentially provided as SaaS) Application (potentially provided as SaaS) Technology Platform AWS IaaS, Azure IaaS Intel x64 Windows Java, .NET, Cloud Foundry AWS PaaS, Azure PaaS Salesforce Word Open Source ERP Systems Slack Eclipse, Firefox, iOS, Android AirBnB, Ebay Uber Youtube Wikipedia AdSense Waze Facebook, WhatsApp Examples

Slide 17

Slide 17 text

“ ”

Slide 18

Slide 18 text

© Fraunhofer IESE 62 Different Constellations of Ecosystem Partners Types All partners of same type e.g. Tinder, WhatsApp (Rare constellation) Provider / consumer e.g. AirBnB, Uber (Most frequent constellation) More partner types e.g. Foodora, Schüttflix (Rather rare constellation)

Slide 19

Slide 19 text

© Fraunhofer IESE 63 Digital Ecosystem with more than 1 Ecosystem Service ◼ Typically start with one ecosystem service ◼ Optional: Add services with tight (business) connection later ◼ Without connection: separate digital ecosystems ◼ With only technical connection: separate digital ecosystems Digital Platform

Slide 20

Slide 20 text

© Fraunhofer IESE 64 Digital Ecosystem Multiple Ecosystem Services

Slide 21

Slide 21 text

© Fraunhofer IESE 65 Domain Ecosystem ◼ Established business ecosystem in a business domain ◼ Existing players and relationships

Slide 22

Slide 22 text

© Fraunhofer IESE 66 Domain Ecosystem ◼ Digital ecosystems emerge and address needs ◼ Competing digital ecosystems possible ◼ Various digital ecosystems possible

Slide 23

Slide 23 text

Industrie 4.0 Smart Farming Smart Energy Smart Mobility Smart Health Smart Rural Areas Smart Teams Smart X Smart Ecosystems

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

© Fraunhofer IESE 78 Mobility Internet Giants OEMs Suppliers (1st Tier ) Material & Tool Suppliers User Mobility Workshops Roadside Assistance Diagnostics Parts Trade Ambulance Dealership Gas Stations Leasing Insurance

Slide 26

Slide 26 text

Cross-Domain and Overlapping Digital Ecosystems Car Manufacturers (> 102) Insurance Comp. Car Rental Comp. Smartphone and App Users (> 108) Drivers (> 105) Passengers (> 107) Bus Companies (> 103) Passengers (> 105)

Slide 27

Slide 27 text

Passengers (> 105) Cross-Domain and Overlapping Digital Ecosystems Car Manufacturers (> 102) Drivers (> 105) Bus Companies (> 103) Insurance Comp. Car Rental Comp. Smartphone and App Users (> 108) Passengers (> 107) MOBILITY Domain Ecosystem INSURANCE Domain Ecosystem

Slide 28

Slide 28 text

Passengers (> 105) Cross-Domain and Overlapping Digital Ecosystems Car Manufacturers (> 102) Drivers (> 105) Bus Companies (> 103) Insurance Comp. Car Rental Comp. Smartphone and App Users (> 108) Passengers (> 107) APP Domain Ecosystem

Slide 29

Slide 29 text

New possibilities for business models and services Access to large number of ecosystem participants Simplicity by harmoni- zation and great user experience Openness for many participants and easy access Huge freedom of design Possibility for disruptive repositioning Great potential for growth and high scalability Network effects and participation in business Possibility to invest in growth, UX, attractiveness Chances by Digital Ecosystems

Slide 30

Slide 30 text

“ ”

Slide 31

Slide 31 text

This ecosystem thing can‘t be that difficult … We already built a platform … We just call it „ecosystem“! It is our ecosystem: it has to serve mainly us That‘s what our CDO is doing No one else will be able to initiate such an ecosystem Small innovations lead us in the future, as well We only care about ourselves We will care about the business model later … There is just no choice for our ecosystem participants The ecosystem has to deliver a RoI after 18 months We let a consultant just do this for us

Slide 32

Slide 32 text

… unfortunately it is outside the comfort zone Big Picture End-to-End Long-term thinking Patience Data-driven business models Value networks Balanced Interests Missing overall control Crossing organizations Diversity Uncertainty No clearly prescribed ways and methods

Slide 33

Slide 33 text

Business Technology Legal CORE Vision Strategy Engineering Usage Operation Governance ORGANIZATION Partner Scouting Casting & Matching Pairing & Engagement Technical Scouting Collaboration Evaluation PARTNERS Establishment Exploitation Nurturing COMMUNITY Observation Exploration Analysis Intervention COMPETITORS OTHER KNOWN PLAYERS Platform Economy Fraunhofer Digital Ecosystems Reference Model Google Apple Facebook Amazon Microsoft Samsung

Slide 34

Slide 34 text

TANGIBLE ECOSYSTEM DESIGN SERVICE BLUEPRINT SERVICE MAP MOTIVATION MATRIX

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

Ecosystem Evolution Time Time Network Effects More Services More Benefits More Asset Types Business Volume Volume by Asset Consumers #Asset Consumers Volume by Asset Providers #Asset Providers Platform Status

Slide 39

Slide 39 text

From the Outside, it seems to be just a Website or an App … Time Business Volume ~17.000 ~5.300 ~18 M ~22.000 ~75 M ~7.000 ~167 M ~12.700 ~50 M ~15.000 ~570 M #Employees #Consumers Successful ecosystems have been growing over 5 .. 20 years No quick ROI Patience over years Investment into fast growth

Slide 40

Slide 40 text

Datenökosysteme

Slide 41

Slide 41 text

© Fraunhofer IESE 273 Relevance of Data and AI in Digital Ecosystems Digital Platform Many ecosystem participants → large data sets Data as „assets“ in digital ecosystems Data as foundation for new business models Data as foundation for improvement of services Large data sets → good foundation of usage of AI

Slide 42

Slide 42 text

© Fraunhofer IESE 274 Data Ecosystems – The ASSET is DATA DATA PROVIDER DATA CONSUMER DATA BROKERING DATA BROKERING

Slide 43

Slide 43 text

© Fraunhofer IESE 275 Data – Information - Knowledge https://www.i-scoop.eu/big-data-action-value-context/dikw-model/

Slide 44

Slide 44 text

© Fraunhofer IESE 276 Types of Data – Data can be Classified According to Many Dimensions ◼ Sensitivity of Data ◼ Data related to persons ◼ Data sensitive for an organization ◼ Data open to public ◼ … ◼ Content types of data ◼ Images, Video, Audio ◼ Free text ◼ Structured data ◼ … ◼ Degree of processing ◼ Raw Data ◼ Aggregated data ◼ Analyzed data ◼ Data incorporated in ML models ◼ … ◼ Data according to creators ◼ Data collected via sensors observing machines ◼ Data collected via sensors observing people ◼ Data collected from analyzing data in IT systems ◼ … ◼ Frequency of change of data ◼ Data created once, never updated ◼ Data created once, rare updates ◼ Data frequently updated ◼ … ◼ Data usage ◼ Master data ◼ Transactional data ◼ Configuration data ◼ … ◼ …

Slide 45

Slide 45 text

© Fraunhofer IESE 277 Data – Collection to Usage Data Collection Data … Data Usage Data … … ◼ Data Modeling ◼ Data Collection ◼ Data Transformation ◼ Data Aggregation ◼ Data Analysis ◼ Data Visualization ◼ Data Storage ◼ Data Transportation ◼ Data Cleaning / Preparation ◼ Data Harmonization ◼ Data Learning ◼ Data Management ◼ …

Slide 46

Slide 46 text

© Fraunhofer IESE 278 Perspective and Scope of Data: 1 Organization Many business processes Many applications Many data bases Data silos (Partial) interoperability? (Partial) integration?

Slide 47

Slide 47 text

© Fraunhofer IESE 279 Extended Perspective: Organizations using SaaS of other Company Business processes partially externally defined Software externally hosted Data externally stored Data externally analyzed Provide SaaS

Slide 48

Slide 48 text

© Fraunhofer IESE 280 Extended Perspective: Company-Crossing Business Processes Business Processes across company boundaries Exchange of data according to defined data formats, interfaces, software applications Cooperation & Data Exchange

Slide 49

Slide 49 text

© Fraunhofer IESE 281 Extended Perspective: Data-Driven Business Models Services based on data of a single customer (e.g. analysis of financial situation, offered as SaaS) Services based on data of many customers (e.g. analysis of music suggestions across many users in spotify) Services based on external or public data (e.g. analysis of weather conditions for driving safety) Services based on „selling“ or „brokering“ of data (e.g. data market places) … Data-Driven Services and Business Models

Slide 50

Slide 50 text

© Fraunhofer IESE 282 Data Ecosystems – The ASSET is DATA DATA PROVIDER DATA CONSUMER DATA BROKERING DATA BROKERING

Slide 51

Slide 51 text

© Fraunhofer IESE 283 Boundaries and Roles in Digital Ecosystems Participants, Asset Providers Participants, Asset Consumers Partners Partners Digital Platform Digital Ecosystem Service Ecosystem Initiator Service Provider Platform Operator

Slide 52

Slide 52 text

C A R U S O - D A T A P L A C E . C O M 284 #carusodataplace CARUSO B2B DATAPLACE PROVIDING IN-VEHICLE DATA FOR MOBILITY SERVICES CARUSO DATA PROVIDERS DATA CONSUMERS END USERS Collect Standardize Distribute New services New customers Efficient processes Different providers Different data formats Different quality / price Added Value for B2X Use Cases

Slide 53

Slide 53 text

DATA ECOSYSTEM IN MOBILITY / AUTOMOTIVE OEM INSURANCE B2C Car Driver

Slide 54

Slide 54 text

© Fraunhofer IESE 286 Data Catalogs and Data Harmonization ◼ Huge effort to harmonize data ◼ Requests for data (number of data items, frequency of delivery) can be extreme ◼ Demand for data is strongly expressed ◼ Nevertheless, often no clear usage scenarios for the data

Slide 55

Slide 55 text

© Fraunhofer IESE 287 Datenökosystem im Bereich Finance Banking Data Hub Kunde D Kunde C Kunde B Kunde A Kunde B Bank Z Bank Y Bank X Kunde A Bankkunden Banken Ökosystem- Initiator FinTechs FinTech-Kunden (=Bankkunden) Bonitäts- prüfung Vertrags- optimierung “Energie” Vertrags- optimierung “Versicherung” Kunde C

Slide 56

Slide 56 text

© Fraunhofer IESE 288 Datensouveränität – Betrifft mich das überhaupt?

Slide 57

Slide 57 text

© Fraunhofer IESE 289 Data Sovereignty ◼ Data sovereignty goes beyond personal data protection (GDPR) ◼ Applies also to data not related to persons ◼ Highly demanded or often “assured”, but rarely defined ◼ Definition ◼ „Data sovereignty means the greatest possible control, influence and insight into the use of data by the data provider. The data provider should be entitled and empowered to exercise informational self-determination and receive transparency about data usage.” Transparency Self- Determination Data Sovereignty

Slide 58

Slide 58 text

© Fraunhofer IESE 290 Data Sovereignty – More Detailed Aspects … Still needing Refinement Control the Usage of Data ◼ Data Owner and Data User agree on a Data Usage Contract / Data Owner gives consent about Data Usage ◼ Consent can be revoked ◼ Some Rules need to be enforced @ Data Provider Side (before passing data to the consumer) ◼ Some Rules need to be enforced @ Data Consumer Side (using the data at the consumer) Transparency about the Usage of Data ◼ Information before giving consent ◼ Data Consumer provides a description about the intended data accesses and usages ◼ Information at runtime (Logging, Notifications) ◼ Transparency about the data accesses (whenever the Data Provider provided data to the Data Consumer) ◼ Transparency about the data usages (whenever the Data Consumer uses the Data) Freedom to Use the Data in other Systems ◼ Ability to provide third parties / other systems with access to the Data ◼ Ability to delete all data ◼ Ability to get a copy of the data in a common format

Slide 59

Slide 59 text

© Fraunhofer IESE 291 Lösungsbausteine, um zu Datensouveränität zu kommen Verständliche Datenschutz- informationen Nutzbare Datenschutz- einstellungen Datennutzungs- kontrolle Nachvollzieh- barkeit Sicherheits- anforderungen Qualitäts- modelle Usable Security and Privacy Privacy Dashboards Basis-Sicherheit Sicherheits- konzepte für Digitale Ökosysteme Grundlagen Transparenz Selbst- bestimmung Lösungen für Daten- souveränität

Slide 60

Slide 60 text

© Fraunhofer IESE 292 Digitale Plattform Digitales Ökosystem Support Service Betreiber Plattform Betreiber Cybersecurity in Digitalen Ökosystemen: Eine sichere Digitale Plattform ist bei weitem nicht genug! Asset Konsument Asset Anbieter Digitale Plattform Ökosystem Service Support Service Daten Viele und vielfältige Daten Exponiertes Gesamtsystem mit vielen Angriffspunkten Interessantes Angriffsziel Security der Digitalen Plattform + Security in allen IT-Systemen und Organisationen des Digitalen Ökosystems Ganzheitliche Lösungen bei mangelnder Gesamtkontrolle

Slide 61

Slide 61 text

© Fraunhofer IESE 293 Sicherheitskonzepte für Digitale Ökosysteme ◼ Datensicherheit auf der Plattform ◼ Datensouveränität im Ökosystem ◼ Ökosystemübergreifende Datensouveränität

Slide 62

Slide 62 text

© Fraunhofer IESE 294 Datentreuhänder ◼ Datentreuhänder vermittelt in Konstellationen zwischen Datenanbietern und Datenkonsumenten ◼ Fehlendes direktes Vertrauen → zusätzliche Instanz schafft Vertrauen ◼ Zentraler Hub ◼ Datentreuhänder können Datenökosysteme aufbauen ◼ Unterschiedlichste Ausprägungen und Aufgaben denkbar ◼ Sicherer, nachweisbarer Datenaustausch ◼ Bündelung und / oder Aggregation von Daten ◼ Eventuell auch Anonymisierung / Pseudonymisierung von Daten ◼ Genauer Auftrag des Treuhänders (Bezahlung, Anonymisierung, Auslieferung, …) ◼ Verwaltung der Daten vs. Weiterleitung der Daten ◼ Keine klar akzeptierten Definition; noch in der Findungsphase; individuelle Modelle möglich

Slide 63

Slide 63 text

Plattformen im Gesundheitswesen

Slide 64

Slide 64 text

© Fraunhofer IESE 296 Players in the Medical / Healthcare Domain Ecosystem Internet Giants People Patients Health Insurance Personal Device Manufacturers Pharmacy Material / Drug Provides Doctors Rescue Service Medical Device Manufacturers Medical Software & Platform Providers Therapy Personal Health Trainers Hospitals

Slide 65

Slide 65 text

© Fraunhofer IESE 297 Related Studies ◼ Term „Platform“ used in many different ways ◼ Often, its not about digital ecosystems but SaaS solutions or health- specific PaaS solutions

Slide 66

Slide 66 text

© Fraunhofer IESE 298 © Roland Berger: The rise of healthcare platforms

Slide 67

Slide 67 text

© Fraunhofer IESE 311 Where is Our Place in Ecosystems? ?

Slide 68

Slide 68 text

Digitale Ökosysteme, Datenökosysteme, Plattformen im Gesundheitssystem — Dr. Matthias Naab Zertifikatskurs 22.01 (CAS Healthcare Management MiG) 30.03.2022

Slide 69

Slide 69 text

Digitale Ökosysteme: Welche Herausforderungen stellt der Aufbau und wie gelingt er? https://www.informatik-aktuell.de/management-und-recht/digitalisierung/digitale-oekosysteme-welche-herausforderungen-stellt-der-aufbau-und-wie-gelingt-er.html Digitale Ökosysteme und Plattformökonomie: Was ist das und was sind die Chancen? https://www.informatik-aktuell.de/management-und-recht/digitalisierung/digitale-oekosysteme-und-plattformoekonomie.htm Dr. Marcus Trapp Dr. Matthias Naab Dr. Dominik Rost Claudia Nass Matthias Koch Bernd Rauch

Slide 70

Slide 70 text

https://youtu.be/gVdtVa8Tp1Y

Slide 71

Slide 71 text

https://youtu.be/Bc3FJeFMLAs