Slide 1

Slide 1 text

Brownian Bridge Interpolation for Human Mobility? 著者: John Krumm, Microsoft Research 読む人: @cocomoff @論文読み会 2021/12/14

Slide 2

Slide 2 text

内容 「Brownian bridge」っていう簡単な確率的補間手法があるけど,これっ て人間の位置情報の補間に使えるのか? を調べるために,12M人のデータ に対して実際に適用してやってみた & 適用するために手法も確立した ブラウン橋 1/17

Slide 3

Slide 3 text

目次 内容 確率過程とブラウン橋 論文のResearch Question ブラウン橋のパラメータを求める最尤推定法 実験 2/17

Slide 4

Slide 4 text

確率過程とブラウン橋 (1/3) 確率過程: 時間などの条件によって変化する確率変数の数理モデル 雑な理解: のようなオブジェクトを扱う道具 マルコフ過程: が にのみ依存する ガウス過程: から任意に 個取り出して (略) したものが 常に多次元正規分布に従うような確率過程 ブラウン運動: 微粒子がランダムに運動する物理現象 ウィーナー過程: ブラウン運動の数学的なモデル 標準ブラウン運動: 以下を満たす確率過程 , は定常増分を持つ, は増分の列が互い に独立になる, ,確率1で は連続 3/17 マルコフ過程のうち,取りうる値が加算個以下の場合,マルコフ連鎖と呼ばれるアレになる

Slide 5

Slide 5 text

確率過程とブラウン橋 (2/3) ブラウン橋: 標準ブラウン運動の定義域 を にのみ制限し, であるような標準ブラウン運動 実装的には, を標準ブラウン運動のオブジェクトとして, で定義されるような である 4/17

Slide 6

Slide 6 text

確率過程とブラウン橋 (3/3) 2次元のブラウン橋 (論文版): 2点 が観測済みで,その間をパラメー タ で補間するような確率過程 ただしパラメータは2点の線形補間 平均ベクトル: 分散は は唯一のパラメータ (diffusion coefficient と呼ばれる) 5/17

Slide 7

Slide 7 text

目次 内容 確率過程とブラウン橋 論文のResearch Question ブラウン橋のパラメータを求める最尤推定法 実験 6/17

Slide 8

Slide 8 text

論文のResearch Question ブラウン橋の手法的な立ち位置 ブラウン橋は人流データ補間に対してどういう性質を持つのか パラメータが でシンプルだけど,本当にOK? 2つの角度から検証する diffusion coefficient の consistency を確認する 既存手法が遅いので,最尤推定法を作った ブラウン橋とデータの間で統計的検定をしてみる 7/17

Slide 9

Slide 9 text

目次 内容 確率過程とブラウン橋 論文のResearch Question ブラウン橋のパラメータを求める最尤推定法 実験 8/17

Slide 10

Slide 10 text

点の取り方 ブラウン橋は2点の補間なので,人流データから点を抽出して計算する 論文で使ったデータ (左の範囲) 論文では「50km以内」「48時間以内」の点を使った パラメータ推定のために3点を抽出して推定する 右図の取り方が Horne triples と呼ばれている (traditional method) 本論文では全3点取る場合も考えて All triples と呼ぶ 論文データではHornが286,541,325個,Allが173,844,732,847個 9/17

Slide 11

Slide 11 text

最尤推定法 データ 位置 の尤度 データに 個の3点があるので, として最尤推定する 頑張って式展開すると以下が求まる ( ) 10/17

Slide 12

Slide 12 text

推定パラメータの使い方とデータ分割 | 個人単位 データ (例えば人流) に対してどのように推定値 を使うのか Horne triplesとAll triplesを計算し,データ中の個人が持つtriplesの個数 をカウントする (たぶん1つの を使っていいのか?を見たい) 11/17

Slide 13

Slide 13 text

個人をグループ分けして複数のパラメータを推定する | 分割単位 距離と時間の分かれぐらいでグループ分けして推定するのもアリ 分解能を とし,データ全体を で分け,全体で を1000分割, を576分割し,全部で576,000個に分割して個数を可視化 12/17

Slide 14

Slide 14 text

目次 内容 確率過程とブラウン橋 論文のResearch Question ブラウン橋のパラメータを求める最尤推定法 実験 13/17

Slide 15

Slide 15 text

Diffusion Coefficientsの推定 いろいろ推定した (individual vs collective, trimmed vs untrimmed) 結論 データでは人は単一の を持っていない Horne triplesとAll triplesでの差は大きくないが,傾向もない 簡単に関連付けて結論付ける方法はなさそう 14/17

Slide 16

Slide 16 text

統計的検定 | 平均ベクトルのHotelling's T-square test ブラウン橋では間の点 について を期待 帰無仮説: 期待ベクトルがゼロベクトルになる を変更した場合,どれぐらい検定が失敗するかのカーブを調べた Horn triplesを使うときはreasonableだが,all triplesでは…? 15/17

Slide 17

Slide 17 text

統計的検定 | ガウス分布の検定 2点の間を予測する確率が正規分布で書けることから,中間点が実際にガ ウス分布に従っているか?を検定で確認すれば良い (正規性の検定) と変数変換すると, である.今真の が分からないので, と設 定した (正規性を怖さないからOK,というノリ) Henze-Zirkler testを利用した (最新のmultivariate nomality test) 16/17

Slide 18

Slide 18 text

まとめ やりたかったこと: 人流補間にブラウン橋が使えるのか? 検討したこと の検証: 最尤推定を提案した上で計算すると,人流の共通パラメ ータはなさそう.1つ選ぶならmedianとかを使うのが良さそう データと比較した検定: (1) Horn triplesに対して,平均ベクトルはvalid (2) データはほとんどガウス分布に従っていないので,ブラウ ン橋はデータの補間として正確ではない そのためシンプルなブラウン橋でのタイトルへの答えは No 今後の課題 より複雑な過程,他の確率的な補間の検証,データからの学習 17/17