Slide 1

Slide 1 text

SIIM-ISIC Melanoma Classification いのうえ

Slide 2

Slide 2 text

Overview → →

Slide 3

Slide 3 text

Last year’s solution (Link) ↓

Slide 4

Slide 4 text

My approach summary Region model EfficientNetB3 TPU models EfficientNets TPU models EfficientNets TPU models EfficientNets TPU models EfficientNets TPU models EfficientNets TPU models EfficientNets TPU models EfficientNets TPU models Effnets Crop-model RegNet16, 80 Crop model RegNet16, 80 Patch-Attention-model RegNets Patch-Attention-model RegNets Patch-Attention-model RegNets Patch Attention model Effnets, RegNets Ridge Stacking TPU models EfficientNets TPU models EfficientNets TPU models EfficientNets TPU models EfficientNets TPU models Effnets Ridge Stacking

Slide 5

Slide 5 text

Interesting Discussion (Link) ↓

Slide 6

Slide 6 text

Region model ↓

Slide 7

Slide 7 text

Patch-Based Attention model (link)

Slide 8

Slide 8 text

Postprocessing?

Slide 9

Slide 9 text

Postprocessing? 以上の予測値を 倍 →

Slide 10

Slide 10 text

Key discussion (link)

Slide 11

Slide 11 text

1st place (link) 2018+2019+2020's data or 2020 only →

Slide 12

Slide 12 text

2nd place (link) → EfficientNet-B6, 512x512, BS64, no metadata (CV 0.9336 / public 0.9534) EfficientNet-B7, 640x640, BS32, gradient accumulation 2, no metadata (CV 0.9389 / public 0.9525) Model 1, trained on combined training and pseudolabeled test data (CV 0.9438 / public 0.9493)

Slide 13

Slide 13 text

2nd place (link) → EfficientNet-B6, 512x512, BS64, no metadata (CV 0.9336 / public 0.9534) EfficientNet-B7, 640x640, BS32, gradient accumulation 2, no metadata (CV 0.9389 / public 0.9525) Model 1, trained on combined training and pseudolabeled test data (CV 0.9438 / public 0.9493)

Slide 14

Slide 14 text

Others