Slide 1

Slide 1 text

Deep Learning for Everyone Gabriela de Queiroz Sr. Engineering & Data Science Manager, IBM Founder, R-Ladies & AI Inclusive @gdequeiroz | k-roz.com slides: bit.ly/rday-medellin

Slide 2

Slide 2 text

Gabriela de Queiroz • Founder of R-Ladies • Founder of AI Inclusive (ai-inclusive.org) • Member of the R Foundation • Sr. Engineering & Data Science Manager, IBM Data Scientist + Developer Advocate + Open Source Developer + Manager + Community Builder + Mentor slides: bit.ly/rday-medellin

Slide 3

Slide 3 text

slides: bit.ly/rday-medellin Worldwide organization that promotes diversity in the #rstats community via meetups and mentorship in a friendly and safe environment.

Slide 4

Slide 4 text

slides: bit.ly/rday-medellin 2012 - From Brazil to San Francisco

Slide 5

Slide 5 text

5 San Francisco, CA October 2012

Slide 6

Slide 6 text

slides: bit.ly/rday-medellin meetup.com/rladies-medellin facebook.com/MedellinRLadies twitter.com/RLadiesMedellin @gdequeiroz | www.k-roz.com

Slide 7

Slide 7 text

Center for Open Source Data and AI Technologies (CODAIT) 30+ open source developers! Watson West Building 505 Howard St. San Francisco, California Improving Enterprise AI lifecycle in Open Source Gather Data Analyze Data Machine Learning Deep Learning Deploy Model Maintain Model Python Data Science Stack Fabric for Deep Learning (FfDL) Mleap + PFA Scikit-Learn Pandas Apache Spark Apache Spark Jupyter Model Asset eXchange Keras + Tensorflow CODAIT codait.org Gather Data Analyze Data Machine Learning Deep Learning Deploy Model Maintain Model Python Data Science Stack Fabric for Deep Learning (FfDL) PFA, PMML, ONNX Scikit-Learn Pandas Apache Spark Jupyter Model Asset eXchange (MAX) Tensorflow + PyTorch AIF360 ART AIF360 ART AIF360 ART Apache Spark Data Asset eXchange (DAX) Build tools to make AI accessible to all @gdequeiroz | www.k-roz.com

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

❗ https://twitter.com/JeffDean/status/1135114657344237568?s=20

Slide 10

Slide 10 text

> 4 million results! > 183 million results!

Slide 11

Slide 11 text

slides: bit.ly/rday-medellin Help!

Slide 12

Slide 12 text

Model Asset eXchange Place for developers/data scientists to find and use free and open source deep learning models ibm.biz/model-exchange @gdequeiroz | www.k-roz.com

Slide 13

Slide 13 text

30+ ready to use deep learning models

Slide 14

Slide 14 text

Model Asset eXchange (MAX) • Wide variety of domains (text, audio, image, etc) • Multiple deep learning frameworks (TensorFlow, 
 PyTorch, Keras) • Trainable and Deployable versions ibm.biz/model-exchange

Slide 15

Slide 15 text

What do I need to get started?

Slide 16

Slide 16 text

https://www.docker.com

Slide 17

Slide 17 text

Ways of accessing the models

Slide 18

Slide 18 text

OBJECT DETECTOR Localize and identify multiple objects in a single image @gdequeiroz | www.k-roz.com

Slide 19

Slide 19 text

ibm.biz/model-exchange

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

Access the API via Swagger

Slide 22

Slide 22 text

Access the API via Python Try yourself here: ibm.biz/max-notebook

Slide 23

Slide 23 text

Access the API via R slides: bit.ly/rday-medellin

Slide 24

Slide 24 text

Access the API via Web App Try yourself here: ibm.biz/object-detector-webapp

Slide 25

Slide 25 text

Access the API via Node-RED flow

Slide 26

Slide 26 text

Access the API via CodePen

Slide 27

Slide 27 text

All this in a standardized way

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

Find* a state-of-art open source deep learning model specific to domain Validate license terms Perform model health check & code clean up Wrap models in MAX framework and provide REST API Publish the deployable model as Docker images on Docker Hub Use the MAX training framework to create an image for custom model training Review and Continuous Integration * or build from scratch BEHIND THE SCENES

Slide 30

Slide 30 text

And if you are feeling adventurous…

Slide 31

Slide 31 text

You can train your model using your own data

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

www.k-roz.com @gdequeiroz | www.k-roz.com

Slide 34

Slide 34 text

How do I get started?

Slide 35

Slide 35 text

@gdequeiroz | www.k-roz.com ibm.biz/max-tutorial

Slide 36

Slide 36 text

Code Patterns How to easily consume MAX models ibm.biz/max-code-patterns

Slide 37

Slide 37 text

Would you like to contribute? Check our central repository containing all details about contribution. ibm.biz/max-central-repo

Slide 38

Slide 38 text

Ideas for contribution: 1) New model using the Model Asset Exchange Skeleon ibm.biz/max-central-repo

Slide 39

Slide 39 text

Ideas for contribution: 2) Demo notebooks in Python ibm.biz/max-central-repo

Slide 40

Slide 40 text

Ideas for contribution: 3) Demo notebooks (.Rmd for example) in R 4) Shiny Apps ibm.biz/max-central-repo ibm.biz/object-detector-webapp

Slide 41

Slide 41 text

Photo by Peter Adams - Check this out: http://www.facesofopensource.com/ I'm the first one to be representing #rstats #rladies Thank you! K-ROZ .COM @GDEQUEIROZ ai-inclusive.org ibm.biz/model-exchange