Slide 1

Slide 1 text

Mapping COVID-19 Coast to Coast, and Around the World Alan McConchie // Stamen Design NACIS Practical Cartography Day October 14, 2020 Slides: sta.mn/8vj Video: youtu.be/DeDYDql4O3Q

Slide 2

Slide 2 text

COVID-19 Mobility Data Network Working with Facebook’s Data for Good and the COVID-19 Mobility Data Network, we mapped movement in regions around the world during the pandemic. The COVID-19 Movement Trends tool seeks to help policy makers answer critical questions: How well have physical distancing interventions worked? Where do communities need the most support with their distancing efforts? How and when, and how quickly, should we re-open different cities, states and countries? visualization.covid19mobility.org

Slide 3

Slide 3 text

Mobility trends as small multiples visualization.covid19mobility.org Stay-at-home percentage Relative change in mobility

Slide 4

Slide 4 text

Mobility trends in the wild Governor’s COVID-19 press conference with Secretary of the California Health and Human Services Dr. Mark Ghaly, April 13, 2020

Slide 5

Slide 5 text

The mobility dashboard: version 1 (R.I.P.)

Slide 6

Slide 6 text

Wanted: map projections for the US (the whole US)

Slide 7

Slide 7 text

Daniel Immerwahr “How to Hide an Empire: A History of the Greater United States”

Slide 8

Slide 8 text

Custom map projections in TileMill and Leaflet (aka “Lying to Leaflet”) oceanplanning.org climate.audubon.org natgeo.com/climate-change/explore-amazonia more info (NACIS PCD 2015) >

Slide 9

Slide 9 text

Custom map projections in TileMill and Leaflet (aka “Lying to Leaflet”) more info (NACIS PCD 2015) > ogr2ogr -f GeoJSON -t_srs "EPSG:2163" -s_srs "EPSG:4326" /vsistdout/ unprojected.geojson | ogr2ogr -f GeoJSON -t_srs "EPSG:4326" -s_srs "EPSG:3857" projected.geojson /vsistdin/

Slide 10

Slide 10 text

Custom map projections in PostGIS and CARTO dsl.richmond.edu/panorama/overlandtrails dsl.richmond.edu/panorama/forcedmigration more info (NACIS 2015) >

Slide 11

Slide 11 text

Custom map projections in PostGIS and CARTO more info (NACIS 2015) > SELECT cartodb_id, name, ST_Transform(ST_SetSRID(ST_Transform(the_geom,2163),3857),4326) as the_geom FROM my_table

Slide 12

Slide 12 text

Reprojection with Dirty Reprojectors using D3.js under the hood more info (dirty-reprojectors github) > cat original.geojson | dirty-reproject --forward patterson > projected_patterson.geojson

Slide 13

Slide 13 text

Lo Bénichou Mapping the US elections: Guide to Albers USA projection in Studio

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

Albers USA + Territories now available: github.com/stamen/geo-albers-usa-territories npmjs.com/package/geo-albers-usa-territories

Slide 17

Slide 17 text

Labels Label data must be reprojected too. Note how county labels only appear for the currently-active state.

Slide 18

Slide 18 text

Make & makefiles ❤ Reproducible command-line workflows Learn more from Seth Fitzsimmons at NACIS PCD 2016 >

Slide 19

Slide 19 text

Makefile morsels just a taste

Slide 20

Slide 20 text

International mobility data for 15 countries visualization.covid19mobility.org Stay-at-home percentage Relative change in mobility

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

FIPS, NUTS, and GADM

Slide 24

Slide 24 text

FIPS: Federal Information Processing Standard (US only) NUTS: Nomenclature des unités territoriales statistiques (Europe only) GADM: Database of Global Administrative Areas (worldwide)

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

Thank you! Alan McConchie @mappingmashups [email protected] Slides: sta.mn/8vj Video: youtu.be/DeDYDql4O3Q Explore the map and let us know what you think! Visualization.covid19mobility.org Thanks to the COVID-19 Mobility Data Network, coordinated by Direct Relief and researchers from the Harvard T.H. Chan School of Public Health. Thanks also to Facebook’s Data for Good program.

Slide 31

Slide 31 text

#exhaust

Slide 32

Slide 32 text

#exhaust

Slide 33

Slide 33 text

#exhaust

Slide 34

Slide 34 text

Miller vs Patterson

Slide 35

Slide 35 text

Tried pasting a Wikipedia table into LibreOffice, because what's the worst that could happen? Oh look, some SVG images came along for the ride!

Slide 36

Slide 36 text

#exhaust