Slide 1

Slide 1 text

Miniaturization for Chemical Analysis and Synthesis Andreas Manz Imperial College London

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

why minitiaturize volume of 1µL 1nL 1pL (1mm)3 (100µm)3 (10µm)3 600,000,000 600,000 600 25 / cm2 2500 / cm2 250 ,000/ cm2 17 min 10s 100ms 1.5 /min / cm2 250 /s / cm2 2,500,000 /s / cm2 # molecules (1nM solution) # volumes In array diffusion time # reactions (diffusion controlled) is a cube of

Slide 4

Slide 4 text

10 fold miniaturization 100 x faster reactions / bioassays 100 x faster separation 1000 x smaller volume 10 x lower reagent consumption

Slide 5

Slide 5 text

human perception < 1 cm is small > 10 m is big < 100 ms is immediate > 1 min is slow factor 100: 100 ms to 1 ms: not impressive 17 h to 10 min: makes a difference 10 min to 6 s: very impressive

Slide 6

Slide 6 text

established semiconductor fabrication techniques light-source mask (from DWL) photo-resist on substrate developing, etching 3-dimensional structure bonding sealed microfluidic device microfabrication technique

Slide 7

Slide 7 text

on-line phosphate analyser E.Verpoorte, A.Manz, H.M.Widmer, B.van der Schoot, N.F. de Rooij,Transducers ‘93, Tokyo (ISBN 4-9900247-2-9), pp 939-942 (1993). m-TAS miniaturized total analysis system

Slide 8

Slide 8 text

drug discovery • first step to find new active molecules • composed of – synthesis of new compound – isolation, characterisation – bioassay • a significant effort in pharmaceutical industry, involving new technologies

Slide 9

Slide 9 text

COMBINATORIAL CHEMISTRY QUALITY CONTROL BIOASSAYS 100 educts A 100 educts B 10,000 products AB 10,000 assays 10,000 assays ??? 10,000 products AB

Slide 10

Slide 10 text

CHEMICAL MICROPROCESSOR SYNTAS m educt A educt B is this a hit? yes/no specific reaction specific bioassay

Slide 11

Slide 11 text

chemical reaction batch Time continuous flow Length

Slide 12

Slide 12 text

Continuous flow Batch process Volume given by time Volume is volume of the vessel Easy up-scale / down scale Up-scale / down-scale difficult [scaling laws!] Fluid handling inherently there Robotics, valve switching or manual Interfacing of components easy: volume flow rate is the only parameter Interfacing of components may need wait times / dummy loops Different reaction times needed can be achieved by difference in length / cross-section The slowest step in the sequence defines the rhythm of switching, if multiple samples have to be processed

Slide 13

Slide 13 text

Continuous flow Batch process Ratio of timing cannot be changed without changing the channel hardware Good flexibility in change of timing Not all analysis / synthesis methods are available All analysis / synthesis methods available Band broadening is critical, if different samples should travel through the system in sequence Different samples = separate batches Problem: to create a sequence of samples is a batch process!!!

Slide 14

Slide 14 text

A B C A B , A , B A B A B C , A B , C A B C A B C fluorescence detection bioassay synthesis step 1 synthesis step 2 separation separation continuous flow

Slide 15

Slide 15 text

A A A A A A A B B B B B A B , A , B A B A +B A +B solvent solvent solvent solvent solvent R E A C TO R S S E P A R A T O R S S T O R A G E

Slide 16

Slide 16 text

pressure induced flow local minimum for bandbroadening defines optimum flow rate How about a sequence of injected samples?

Slide 17

Slide 17 text

electroosmotic flow minimum for bandbroadening at maximum speed

Slide 18

Slide 18 text

pressure electroosmosis

Slide 19

Slide 19 text

pressure induced flow p e a k l e n g t h / w i d t h r a t i o i s 2 0 0 : 1 t o 2 , 0 0 0 : 1 peak length / width ratio can be very small electroosm otic flow

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

double stranded DNA separation

Slide 22

Slide 22 text

reaction with intercalating dye

Slide 23

Slide 23 text

x x x x x x x x x SYBR green x x x x x x x x x x x x x double stranded DNA SYBR green x x x x x x x x x x x x x x x x x x x x x x x x SYBR green complex [fluorescing] x x x x 1) 2) 3)

Slide 24

Slide 24 text

chemical reaction • In the most simple case, a molecule A meets a molecule B and reacts to give AB • many reactions are diffusion controlled • reaction time of hours in conventional lab • reaction time of 30 min in micro well plate

Slide 25

Slide 25 text

R.Srinivasan, S.L.Firebaugh, I.M.Hsing, J.Ryley, M.P.Harold,K.F.Jensen, M.A.Schmidt [Massachusetts Institute of Technology and DuPont, Wilmington], chemical performance and high temperature characterization of micromachined chemical reactors, Transducers 97, Vol.1,p163-166 (1997) Figure 1: Schematic diagram of the microreactor [9] with Pt heaters and temperature sensors represented as electrical resistors.

Slide 26

Slide 26 text

Figure 4. Separation of several amino acids using post-column derivatization for detection. D.J.Harrison, K.Fluri,N.Chiem, T.Tang,Z.Fan University of Alberta, Edmonton,Canada Transducers’95, Proc., vol.1, pp752-755 (1995)

Slide 27

Slide 27 text

Y -shaped junction: 1:1 fluorescein-to-rhodamine B flowrate ratio (0.5 : 0.5 mL/min)

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

Mixing – Diffusion times D d t 2 2  Before laminar mixing D n d t 2 2 2  After laminar mixing n = number of branches, d = tubing diameter, D= diffusion coefficient

Slide 30

Slide 30 text

Distributive Micromixing Device: Schematic F. G. Bessoth, A. J. de Mello and A. Manz, Anal. Commun., 1999, 36, 213-215

Slide 31

Slide 31 text

16 channels 256x faster !

Slide 32

Slide 32 text

Distributive Micromixing Chip

Slide 33

Slide 33 text

F. G. Bessoth, A. J. de Mello and A. Manz, Anal. Commun., 1999, 36, 213-215 Chip manifold volume 600 nL Observation channel 530 nL Distributive Micromixing Device

Slide 34

Slide 34 text

fused silica capillary glue glass Si glass

Slide 35

Slide 35 text

6 ms 14 ms 38 ms 94 ms 54 ms 78 ms 0 ms

Slide 36

Slide 36 text

Fluorescein and Rhodamine B; Flow rate = 50 mL min-1; Time from point of confluence to beginning of long channel = ca. 9 ms laminar flow visualisation

Slide 37

Slide 37 text

fast fluorescence quenching 0 ms 6 ms

Slide 38

Slide 38 text

Mixing * + further downstream reaction incomplete reaction incomplete reaction complete reaction complete reaction complete

Slide 39

Slide 39 text

horseradish peroxidase assay 0 1 2 3 4 5 6 7 8 0 0.02 0.04 0.06 0.08 0.1 0.12 concentration HRP [mg/mL] chemiluminescence signal [V] assay time 30 minutes  400 ms “incubation time” 400 ms

Slide 40

Slide 40 text

NO2 NO2 CHO NO2 P(Ph)3 NO2 purple Br- 2-nitrobenzy ltriphenyl- phosphonium brom ide p-nitrobenza ldehyde colourless NaOMe NO2 Me OH colourless P(Ph)3 + + Wittig reaction N + O O Cl Cl Cl Cl O O Cl Cl Cl N Enamine Chloranil blue 2,3,5-trichlor-6-(2-piperidin -1-yl)-[1,4]- benzoquinone Synthesis of a substituted aminovinyl-p-quinone SYNTHESIS

Slide 41

Slide 41 text

N+ H H R1 R2 Cl- H H O MeOH N+ Cl- H2 O N R3 R4 R2 R1 C R1 N R2 N R4 R3 H2 O R1 N R2 N R4 R3 O R1/R2 = -CH2 (CH2 )3 CH2 - Piperidine hydrochloride + + Piperidinium cation + R3/R4 = -CH2 (CH2 )4 CH2 - Cyclohexyl isocyanide Nitrilium intermediate -Dialkylacetamide Formaldehyde N-Cyclohexyl-2-piperidin-1-yl-acetamide (1) (2) (3) (4) (5) (6) Multicomponent Chemistries: The Ugi Reaction 0oC

Slide 42

Slide 42 text

Inlet capillaries Syringes Rheodyne injection valve Injection loop outlet capillary Micromixer chip / PTFE interface

Slide 43

Slide 43 text

Micromixer TOF-MS Injected plug (MeOH) Continuous infusion (MeOH) Secondary amine hydrochloride (1 eq) + Cyclohexylisocyanide (10 eq) Formaldehyde (10 eq) System set-up

Slide 44

Slide 44 text

Simultaneous Observation of Reactants, Intermediates, Products and By-products 20 mLmin-1 50 nL injection loop Room temperature

Slide 45

Slide 45 text

Compound Library Synthesis Continuous-Flow Dynamic control On-line analysis Real-time identification Real-time optimisation Solution-phase synthesis Well-defined On-line purification... Serial or parallel Solid-Phase Off-line analysis Workup process Off-line identification Off-line optimisation Solid-supported synthesis Physical Handling Ease of purification Parallel (split/pool) Batch Microfluidic Influence of support on chemistry Additional steps required No support No additional steps

Slide 46

Slide 46 text

Acknowledgment Coworkers and Ph.D. students Jan Eijkel Chao-Xuan Zhang Giles Sanders Michael Mitchell Fiona Bessoth Omar Naji Darwin Reyes postdocs Arun Arora Yien Kwok Gareth Jenkins Silvia Valussi Nicole Pamme Oliver Hofmann Paul Monaghan Melanie Fennah Valerie Spikmans Nils Goedeke Dimitrios Iossifidis Pierre-Alain Auroux

Slide 47

Slide 47 text

FUNDING INSTRUMENTATION SmithKline Beecham (UK) Zeneca (UK) BBSRC, UK EPSRC, UK European Commission, B Schlumberger, UK Casect, UK Agilent, D Forensic Lab, UK Asahi Kasei, Japan Lab of the Government Chemist, UK CSEM, Switzerland Amersham Pharmacia, UK Kodak, UK Glaxo Wellcome, UK Glaxo-Wellcome Heidelberg Instruments Hybaid MICROFABRICATION Alberta Microelectronics Centre, Canada Caliper Technologies, California MESA, University of Twente, The Netherlands CSEM, Switzerland