Slide 1

Slide 1 text

29 Transcriptome-Scale Spatial Gene Expression in the Human Dorsolateral Prefrontal Cortex Kristen R Maynard, Ph.D., Research Scientist Leonardo Collado-Torres, Ph.D., Research Scientist Lieber Institute for Brain Development TheScientist Webinar March 19, 2020 @kr_maynard @fellgernon @LieberInstitute @TheScientistLLC

Slide 2

Slide 2 text

The spatial architecture of the brain is fundamentally connected to its function 2 chartdiagram.com slideshare.net

Slide 3

Slide 3 text

Laminar position of a cell influences its gene expression, morphology, physiology, and function 3 Kwan et al., 2012, Development

Slide 4

Slide 4 text

Single nucleus RNA-sequencing & Visium technologies 4 Single Cell Gene Expression Spatial Gene Expression

Slide 5

Slide 5 text

Webinar Overview 5 1. Identification of layer-enriched genes in human cortex using Visium. 2. Spatial registration of single-nucleus RNA-seq data from human cortex. 3. Layer-enriched expression of genes associated with brain disorders. Maynard, Collado-Torres, et al, bioRxiv, 2020

Slide 6

Slide 6 text

Study design for Visium experiments in dorsolateral prefrontal cortex (DLPFC) 6 Andrew E Jaffe Keri Martinowich Stephanie C Hicks Lukas M Weber Cedric Uytingco Nikhil Rao @stephaniehicks @lmwebr @martinowk @andrewejaffe

Slide 7

Slide 7 text

Visualizing gene expression in a histological context 7 logcounts logcounts logcounts Maynard, Collado-Torres, et al, bioRxiv, 2020

Slide 8

Slide 8 text

2 pairs spatial adjacent replicates x subject = 12 sections 8 Subject 1 Subject 2 Subject 3 Adjacent spatial replicates (0µm) Adjacent spatial replicates (300µm) Maynard, Collado-Torres, et al, bioRxiv, 2020 PCP4

Slide 9

Slide 9 text

“Pseudo-bulking” collapses data: spot to layer level 9 Maynard, Collado-Torres, et al, bioRxiv, 2020

Slide 10

Slide 10 text

Three statistical models to assess laminar enrichment “ANOVA” model 10 “Enrichment” model “Pairwise” model Maynard, Collado-Torres, et al, bioRxiv, 2020 Is any layer different? Is one layer > the rest? Is layer X > layer Y?

Slide 11

Slide 11 text

11 ISH images courtesy of Allen Human Brain Atlas: http://human.brain-map.org/ (Hawrylycz et al., 2012) Maynard, Collado-Torres, et al, bioRxiv, 2020 Visium replicates layer-enrichment of previously identified layer marker genes L4>rest, p=1.74e-09 L6>WM, p=4.48e-19 logcounts logcounts

Slide 12

Slide 12 text

Identification & validation of novel layer-enriched genes 12 Maynard, Collado-Torres, et al, bioRxiv, 2020 L5>rest, p=4.33e-12 L6>rest, p=5.05e-12 L1>rest, p=1.47e-10 L2>rest, p=9.73e-11

Slide 13

Slide 13 text

Visium layer-enriched vs. canonical marker genes 13 Maynard, Collado-Torres, et al, bioRxiv, 2020 L1>rest, p=7.94e-15 L5>L3, p=4.44e-02

Slide 14

Slide 14 text

14 Segmentation of histology data identifies spots containing single cell bodies and neuropil 50um Gray matter White matter Neuron Neuropil Glial cell Mouse Brain Tissue Postmortem Human DLPFC Madhavi Tippani @MadhaviTippani Joseph L Catallini II

Slide 15

Slide 15 text

L4 L3 L2 L1 (A) (B) (C) Maynard, Collado-Torres, et al, bioRxiv, 2020 Spatial registration of your sc/snRNA-seq data Your sc/snRNA-seq data Hodge et al, Nature, 2019

Slide 16

Slide 16 text

L4 L3 L2 L1 (A) (B) (C) Maynard, Collado-Torres, et al, bioRxiv, 2020 Spatial registration of your sc/snRNA-seq data Your sc/snRNA-seq data Our spatial data Hodge et al, Nature, 2019

Slide 17

Slide 17 text

17 Maynard, Collado-Torres, et al, bioRxiv, 2020 12 Maynard, Collado-Torres, et al, bioRxiv, 2020 17 Matthew N Tran Brianna K Barry @mattntran @sudo_BreeB Identify clusters in your sc/snRNA-seq data - Pre-process your sc/snRNA-seq data - Identify cell/nuclei clusters - Find data-driven marker genes and/or combine with known marker genes - Label clusters

Slide 18

Slide 18 text

18 Maynard, Collado-Torres, et al, bioRxiv, 2020 # columns for us: 12 * 7 = 84 (76) “Pseudo-bulk” our spatial transcriptomics data

Slide 19

Slide 19 text

19 Maynard, Collado-Torres, et al, bioRxiv, 2020 Your sc/snRNA-seq: cell or nuclei clusters * subjects or other analysis variables “Pseudo-bulk” your sc/snRNA-seq data

Slide 20

Slide 20 text

Three statistical models to assess laminar enrichment “ANOVA” model 20 “Enrichment” model “Pairwise” model Is any layer different? Is one layer > the rest? Is layer X > layer Y? Maynard, Collado-Torres, et al, bioRxiv, 2020

Slide 21

Slide 21 text

WM L6 L5 L4 L3 L2 L1 Oli3 Oli5 Oli4 Oli0 Oli1 Ast3 Ast2 Ast0 Ast1 Mic2 Mic3 Mic0 Mic1 Opc0 Opc1 Opc2 Per End1 End2 Ex2 Ex0 Ex4 Ex6 Ex14 Ex1 Ex5 Ex7 Ex8 In0 In7 In9 In11 In2 In10 In3 In6 In1 In4 In5 In8 Ex3 Ex11 Ex12 Ex9 í í í í (C) Maynard, Collado-Torres, et al, bioRxiv, 2020 Spatial registration of your sc/snRNA-seq data Interpretation guidelines: • Find strong positive correlation values (dark green) to identify cell/nuclei clusters enriched for a given layer • By row: for a given layer • By column: for a given cell/nuclei cluster Mathys et al, Nature, 2019

Slide 22

Slide 22 text

Maynard, Collado-Torres, et al, bioRxiv, 2020 WM Layer6 Layer5 Layer4 Layer3 Layer2 Layer1 22 (Oligo) 3 (Oligo) 23 (Oligo) 17 (Oligo) 21 (Oligo) 7 (Astro) 5 (Astro) 9 (OPC) 26 (OPC) 1 (Micro) 24 (Drop) 13 (Excit) 10 (Excit) 27 (Excit) 29 (Inhib) 14 (Inhib) 15 (Inhib) 18 (Inhib) 2 (Excit) 31 (Excit) 8 (Excit) 16 (Inhib) 28 (Inhib) 30 (Inhib) 20 (Inhib) 11 (Inhib) 25 (Inhib) 4 (Excit) 12 (Excit) 6 (Excit) 19 (Excit) −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 Matthew N Tran Brianna K Barry @mattntran @sudo_BreeB Interpretation guidelines: • Find strong positive correlation values (dark green) to identify cell/nuclei clusters enriched for a given layer • By row: for a given layer • By column: for a given cell/nuclei cluster

Slide 23

Slide 23 text

http://spatial.libd.org/spatialLIBD/ Maynard, Collado-Torres, et al, bioRxiv, 2020 Spatial registration of your sc/snRNA-seq data: DIY

Slide 24

Slide 24 text

24 Maynard, Collado-Torres, et al, bioRxiv, 2020 Cluster1 Cluster2 Cluster3 ENSG00000104419 3 -2 0.3 ENSG0000018400 7 1 0.67 4 … … … … Full example table https://github.com/LieberInstitute/spatialLIBD/blob/master/data-raw/tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer.csv Save your “enrichment” t- statistics for your sc/snRNA-seq clusters Spatial registration of your sc/snRNA-seq data: DIY

Slide 25

Slide 25 text

25 Maynard, Collado-Torres, et al, bioRxiv, 2020 Spatial registration of your sc/snRNA-seq data: DIY spatial.libd.org/spatialLIBD/ Cluster1 Cluster2 Cluster3 ENSG00000104419 3 -2 0.3 ENSG00000184007 1 0.67 4 … … … …

Slide 26

Slide 26 text

Gandal et al, Science, 2018 SFARI GENE; 2.0 by Abrahams et al, Mol Autism, 2013 Jaffe et al, Nature Neuroscience, 2020 - Curated lists - GWAS/TWAS hits - Differential expression - … Layer-enriched gene expression profiling

Slide 27

Slide 27 text

0 2 4 6 8 10 12 WM L6 L5 L4 L3 L2 L1 SFAR I ASC 102 ASD 53 D D ID 49 D E.U p D E.D ow n 2.7 2.1 2.7 4 3.6 4.9 4.5 2.5 5 2.8 5 6.4 2.8 ASD 0 2 4 6 8 10 12 WM L6 L5 L4 L3 L2 L1 PE.U p PE.D ow n BS2.U p BS2.D ow n BS2.U p BS2.D ow n PE.U p PE.D ow n 2.1 2 3.1 1.8 2.2 1.8 8.8 5 2.7 2.6 4.6 6&='í'( 6&='í7:$6 (A) (B) DIY at http://spatial.libd.org/spatialLIBD/ Maynard, Collado-Torres, et al, bioRxiv, 2020 Layer-enriched gene expression profiling Alzheimer’s Disease • SFARI: Abrahams et al, Mol Autism, 2013 • ASC102: Satterstrom et al, Cell, 2020 Break up into: • ASD53: ASD dominant traits • DDID49: neurodevelopmental delay

Slide 28

Slide 28 text

0 2 4 6 8 10 12 WM L6 L5 L4 L3 L2 L1 SFAR I ASC 102 ASD 53 D D ID 49 D E.U p D E.D ow n 2.7 2.1 2.7 4 3.6 4.9 4.5 2.5 5 2.8 5 6.4 2.8 ASD 0 2 4 6 8 10 12 WM L6 L5 L4 L3 L2 L1 PE.U p PE.D ow n BS2.U p BS2.D ow n BS2.U p BS2.D ow n PE.U p PE.D ow n 2.1 2 3.1 1.8 2.2 1.8 8.8 5 2.7 2.6 4.6 6&='í'( 6&='í7:$6 (A) (B) DIY at http://spatial.libd.org/spatialLIBD/ Maynard, Collado-Torres, et al, bioRxiv, 2020 Layer-enriched gene expression profiling Gandal et al, Science, 2018 Collado-Torres et al, Neuron, 2019

Slide 29

Slide 29 text

29 Stephanie C Hicks Lukas M Weber @stephaniehicks @lmwebr Maynard, Collado-Torres, et al, bioRxiv, 2020 Data-driven layer-enriched clustering in the DLPFC Spatially-varying genes Highly-variable genes Spot-level clustering Manual layer annotation using spatialLIBD • Which samples to use? • All samples? • Sample by sample then merge? • Use image-derived information?

Slide 30

Slide 30 text

30 Maynard, Collado-Torres, et al, bioRxiv, 2020 Data-driven layer-enriched clustering in the DLPFC SpatialDE by Svensson et al, Nature Methods, 2018 Are the spatial patterns relevant? Remember to inspect your data!

Slide 31

Slide 31 text

31 Maynard, Collado-Torres, et al, bioRxiv, 2020 Data-driven layer-enriched clustering in the DLPFC SpatialDE by Svensson et al, Nature Methods, 2018 “ANOVA” model F-statistics SpatialDE statistic

Slide 32

Slide 32 text

32 Maynard, Collado-Torres, et al, bioRxiv, 2020 Use known marker genes only Use layer- enriched genes (scenario where you have more datasets) Only use the data Requires >=1 expert Benefits from known marker genes (if expressed) & prior knowledge

Slide 33

Slide 33 text

33 Maynard, Collado-Torres, et al, bioRxiv, 2020 Data-driven layer-enriched clustering in the DLPFC Using spatial coordinates does help in some cases

Slide 34

Slide 34 text

http://spatial.libd.org/spatialLIBD/ Maynard, Collado-Torres, et al, bioRxiv, 2020 Explore our spatial data (or adapt for yours) + perform spatial registration & gene enrichment analyses

Slide 35

Slide 35 text

Summary: transcriptome-scale spatial gene expression in postmortem human cortex 35 http://research.libd.org/spatialLIBD Explore the data: Maynard, Collado-Torres, et al, bioRxiv, 2020

Slide 36

Slide 36 text

Acknowledgements Lieber Institute Keri Martinowich Andrew E. Jaffe Brianna K. Barry Joseph L. Catallini II Matthew N. Tran Zachary Besich Madhavi Tippani Joel E. Kleinman Thomas M. Hyde Daniel R. Weinberger JHU Biostatics Dept JHU Oncology Tissue Services (Kristen Lecksell) Stephanie C. Hicks JHU SKCCC Flow Core (Jessica Gucwa) Lukas M. Weber JHU Transcriptomics & Deep Sequencing Core (Linda Orzolek) 10x Genomics Cedric Uytingco Stephen R. Williams Jennifer Chew Yifeng Yin Nikhil Rao 36 @kr_maynard @fellgernon @LieberInstitute @TheScientistLLC Interested in working with us? Let us know!