Slide 1

Slide 1 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork R + Tensorflow = Reproducibility, Transparency, & Trust IBM Center for Open-Source Data & AI Technologies (http://codait.org) DBG / July, 2018 / © 2018 IBM Corporation

Slide 2

Slide 2 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork ● TensorFlow and R ● Tools/Workflows ● Reproducibility ● Visualization Agenda Speakers 2 GABRIELA DE QUEIROZ Data & AI Developer Advocate, IBM CODAIT [email protected] gdequeiroz https://k-roz.com/ AUGUSTINA RAGWITZ Computational Anthropologist, IBM CODAIT [email protected] mmmpork http://rhappy.fun/

Slide 3

Slide 3 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork What is R? ● Free and Open Source Language and Environment ● Popular language for data scientists ● It has more extensions than any other data science software ● Primary tool for statistical research ● RStudio - an IDE with a lot of functionality ● Awesome Community (#rstats + R-Ladies + R Forwards)

Slide 4

Slide 4 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Why TensorFlow + R?

Slide 5

Slide 5 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork TensorFlow APIs Source/Credits: https://tensorflow.rstudio.com

Slide 6

Slide 6 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Main R Packages + Supporting Tools TensorFlow API ● keras ● tfestimators - Implementations of model types such as regressors and classifiers ● tensorflow - Low-level interface to the TensorFlow computational graph ● tfdatasets - Work with large datasets Tools ● tfruns - Manage experiments (runs) ● tfdeploy - Share models across formats ● cloudml - Interface to Google Cloud ML

Slide 7

Slide 7 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Tools/Workflows

Slide 8

Slide 8 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork tfruns Track and Visualizing Training Runs

Slide 9

Slide 9 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork tfruns - Track and Visualizing Training Runs ● Track the hyperparameters, metrics, output, and source code of every training run. ● Compare hyperparameters and metrics across runs to find the best performing model. ● Generate reports to visualize individual training runs or comparisons between runs.

Slide 10

Slide 10 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork tfruns - Track and Visualizing Training Runs OR

Slide 11

Slide 11 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork tfruns

Slide 12

Slide 12 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork When running another model 128 30

Slide 13

Slide 13 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork When comparing runs (models)

Slide 14

Slide 14 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Training Flags - tfruns::flags()

Slide 15

Slide 15 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Tuning hyperparameters - tfruns::tuning_run() flags = list(256, 20); flags = list(128, 20); flags = list(256, 30); flags = list(128, 30)

Slide 16

Slide 16 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Tuning hyperparameters - tfruns::tuning_run() The best model is the model #2 with 256 dense units and 30 epochs

Slide 17

Slide 17 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Reproducibility

Slide 18

Slide 18 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork tfdeploy Sharing Models for Convenient Collaboration ● Archive Models for reproducible research ● Export and Import Models for later reuse ● Deploy Models as a Service

Slide 19

Slide 19 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Archive Models for Reproducible Research Save in HDF5 or human-readable formats YAML + JSON to use it in R Load saved models for instant reuse

Slide 20

Slide 20 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Export Models Use export_savedmodel() when you want to use it outside of R

Slide 21

Slide 21 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Deploy Models

Slide 22

Slide 22 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Transparency

Slide 23

Slide 23 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Explainable AI Show Your Work for Transparency + Trust ● Visualize model layers in Rmarkdown ● Regression Analysis with kerasformula::kms() ● Introspect blackbox models with LIME

Slide 24

Slide 24 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Visualize Model Layers in Rmarkdown

Slide 25

Slide 25 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Instant Regression with kerasformula::kms()

Slide 26

Slide 26 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Introspect blackbox models with LIME

Slide 27

Slide 27 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Put it in Action! https://blogs.rstudio.com/tensorflow/posts/2018-01-11-keras-customer-churn/ See it live! https://jjallaire.shinyapps.io/keras-customer-churn/

Slide 28

Slide 28 text

Slides available at: http://bit.ly/rtensorflow-oscon18 gdequeiroz / mmmpork Resources ● https://tensorflow.rstudio.com/ ● https://keras.rstudio.com/

Slide 29

Slide 29 text

DOC ID / Month XX, 2018 / © 2018 IBM Corporation

Slide 30

Slide 30 text

Thank you! codait.org developer.ibm.com/code http://github.com/codait DBG / July , 2018 / © 2018 IBM Corporation FfDL Sign up for IBM Cloud and try Watson Studio! https://ibm.biz/BdYRNi MAX https://rladies.org/ @RLadiesGlobal