Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
● TensorFlow and R
● Tools/Workflows
● Reproducibility
● Visualization
Agenda Speakers
2
GABRIELA DE QUEIROZ
Data & AI Developer
Advocate, IBM CODAIT
[email protected]
gdequeiroz
https://k-roz.com/
AUGUSTINA RAGWITZ
Computational
Anthropologist, IBM CODAIT
[email protected]
mmmpork
http://rhappy.fun/
Slide 3
Slide 3 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
What is R?
● Free and Open Source Language and Environment
● Popular language for data scientists
● It has more extensions than any other data science software
● Primary tool for statistical research
● RStudio - an IDE with a lot of functionality
● Awesome Community (#rstats + R-Ladies + R Forwards)
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Main R Packages + Supporting Tools
TensorFlow API
● keras
● tfestimators - Implementations of model types
such as regressors and classifiers
● tensorflow - Low-level interface to the
TensorFlow computational graph
● tfdatasets - Work with large datasets
Tools
● tfruns - Manage experiments (runs)
● tfdeploy - Share models across formats
● cloudml - Interface to Google Cloud ML
Slide 7
Slide 7 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Tools/Workflows
Slide 8
Slide 8 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
tfruns
Track and Visualizing Training Runs
Slide 9
Slide 9 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
tfruns - Track and Visualizing Training Runs
● Track the hyperparameters, metrics, output, and source code of every training run.
● Compare hyperparameters and metrics across runs to find the best performing model.
● Generate reports to visualize individual training runs or comparisons between runs.
Slide 10
Slide 10 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
tfruns - Track and Visualizing Training Runs
OR
Slide 11
Slide 11 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
tfruns
Slide 12
Slide 12 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
When running another model
128
30
Slide 13
Slide 13 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
When comparing runs (models)
Slide 14
Slide 14 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Training Flags - tfruns::flags()
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Tuning hyperparameters - tfruns::tuning_run()
The best model is the model #2 with 256
dense units and 30 epochs
Slide 17
Slide 17 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Reproducibility
Slide 18
Slide 18 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
tfdeploy
Sharing Models for Convenient Collaboration
● Archive Models for reproducible research
● Export and Import Models for later reuse
● Deploy Models as a Service
Slide 19
Slide 19 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Archive Models for Reproducible Research
Save in HDF5 or human-readable formats YAML + JSON to use it in R
Load saved models for instant reuse
Slide 20
Slide 20 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Export Models
Use export_savedmodel() when you want to use it outside of R
Slide 21
Slide 21 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Deploy Models
Slide 22
Slide 22 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Transparency
Slide 23
Slide 23 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Explainable AI
Show Your Work for Transparency + Trust
● Visualize model layers in Rmarkdown
● Regression Analysis with kerasformula::kms()
● Introspect blackbox models with LIME
Slide 24
Slide 24 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Visualize Model Layers in Rmarkdown
Slide 25
Slide 25 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Instant Regression with kerasformula::kms()
Slide 26
Slide 26 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Introspect blackbox models with LIME
Slide 27
Slide 27 text
Slides available at: http://bit.ly/rtensorflow-oscon18
gdequeiroz / mmmpork
Put it in Action!
https://blogs.rstudio.com/tensorflow/posts/2018-01-11-keras-customer-churn/
See it live! https://jjallaire.shinyapps.io/keras-customer-churn/