Slide 11
Slide 11 text
Dot Products,
Quadratic Forms,
Eigenvalues and
Eigenvectors.
Dot Products
Quadratic Forms
Eigenvalues and
Eigenvectors
5.11
Testing quadratic forms: 2 × 2 symmetric matrices.
Example: Determine the definiteness of the symmetric
matrices A− E.
A =
1 0
0 1
, B =
−3 −3
−3 −3
, C =
−2 1
1 −2
,
D =
3 3
3 3
, E =
−2 −3
−3 −2
.
Solutions.
|A| = 1 > 0, and diag(1, 1) > 0 ⇒ A is positive definite.
|B| = 0, and diag(−3, −3) < 0 ⇒ B is negative
semidefinite.
|C| = 3 > 0, and diag(−2, −2) < 0 ⇒ C is negative
definite.
|D| = 0, and diag(3, 3) > 0 ⇒ D is positive semidefinite.
|E| = −5, and diag(−2, −2) < 0 ⇒ E is neither positive
(semi)definite nor negative semi(definite).