Slide 1

Slide 1 text

Christina Koch - HTCondor Week 2016 1 Computational Taxonomy The right solutions for the right research problems

Slide 2

Slide 2 text

Christina Koch - HTCondor Week 2016 2 In the field ¡ In 2015, CHTC’s research computing facilitators: ¡  Met with 371 researchers from UW Madison* ¡  Representing ~57 departments ¡  258 of these researchers were new users of CHTC resources ¡ Representing a wide variety of: ¡  disciplines, research questions, backgrounds ¡  computational problems and needs

Slide 3

Slide 3 text

Christina Koch - HTCondor Week 2016 3 Research matters ¡ Which tools to use? ¡ Understanding computational research problems is a first step to providing appropriate solutions. ¡ Benefits include: ¡  Better resource utilization ¡  A broader range of computing- enabled researchers

Slide 4

Slide 4 text

Christina Koch - HTCondor Week 2016 4 Impact

Slide 5

Slide 5 text

Christina Koch - HTCondor Week 2016 5 A research taxonomy ¡ How to categorize common computational problems in research? ¡ Think about the “shape” of a research problem: ¡  How many “pieces”? ¡  Dependent or independent processes? ¡  What kind of input/output?

Slide 6

Slide 6 text

Christina Koch - HTCondor Week 2016 6 Overview ¡  Problems ¡  ⚛ Particle Simulation ¡  Aggregation ¡  Optimization ¡  Data I: Analysis ¡  Data II: Generation ¡  Solutions ¡  high performance computing ¡  high throughput computing ¡  large memory

Slide 7

Slide 7 text

Christina Koch - HTCondor Week 2016 7 ⚛ Ÿ Particle Simulation ¡ Problem: ¡  Model behavior of many particles in a system over time. ¡ Examples: ¡  astronomy, engineering (materials, civil, electrical, industrial, nuclear), chemistry, geosciences, physics ¡ Typical solution: ¡  multi-core (multi-server) software; a typical HPC cluster

Slide 8

Slide 8 text

Christina Koch - HTCondor Week 2016 8 Ÿ Optimization ¡ Problem: ¡  Find the best solution given a starting state and lots of unknown variables. ¡ Examples: ¡  optimization, genetic algorithms, Monte Carlo, machine learning ¡  economics, psychiatry, computer science, math, stats ¡ Solution: ¡  varies: multi-core software, high throughput workflow, GPUs

Slide 9

Slide 9 text

Christina Koch - HTCondor Week 2016 9 Ÿ Aggregation ¡ Problem: ¡  Take a large amount of raw data and form some sort of summary: either aggregated or differentiated. ¡ Examples: ¡  genome assembly, phylogenetic trees, topic modeling ¡  genetics, biostatistics, statistics, education policy, geosciences, pharmacy ¡ Solution: ¡  varies, often requires a high amount of memory

Slide 10

Slide 10 text

Christina Koch - HTCondor Week 2016 10 Ÿ Data I: Analysis ¡ Problem: ¡  Analyze many independent pieces of data. ¡ Examples: ¡  image analysis (e.g. fMRI), genetic data, climate/hydrological models ¡  pyschology/psychiatry, genetics, forestry, engineering, zoology, animal sciences, biochemistry, botany ¡ Solution: ¡  running many independent jobs - high throughput computing

Slide 11

Slide 11 text

Christina Koch - HTCondor Week 2016 11 Ÿ Data II: Generation ¡ Problem: ¡  Generate data at a large scale for further analysis. ¡ Examples: ¡  parameter sweeps, Monte Carlo methods, protein folding/docking ¡  economics, statistics, engineering, drug discovery, biochemistry ¡ Solution: ¡  running many independent jobs - high throughput computing

Slide 12

Slide 12 text

Christina Koch - HTCondor Week 2016 12 Overview ¡  Problems ¡  ⚛ Particle Simulation ¡  Aggregation ¡  Optimization ¡  Data I: Analysis ¡  Data II: Generation ¡  Solutions ¡  high performance computing ¡  high throughput computing ¡  large memory

Slide 13

Slide 13 text

Christina Koch - HTCondor Week 2016 13 Caveats ¡ It can be useful to think of research problems in these broad categories. ¡  Facilitate immediate understanding of problems ¡  Recognize need for diverse solutions ¡ However, each research problem is unique. ¡  Treat each problem individually ¡  Fully understand problem first, then seek solution ¡  Try new things ¡ Complement technical solutions with human assistance.

Slide 14

Slide 14 text

Christina Koch - HTCondor Week 2016 14 Human solutions ¡ Matchmaking ¡  Identify researcher problems and match them to solutions (including people) ¡  Bring together people with the same problem ¡ Training and support ¡  Help researchers implement appropriate solutions ¡ Advocacy ¡  Communicate common problems to computational experts who can provide solutions

Slide 15

Slide 15 text

Christina Koch - HTCondor Week 2016 15 Impact

Slide 16

Slide 16 text

Christina Koch - HTCondor Week 2016 16 Impact ¡ Significant increases over two years in usage from researchers in: ¡  Life Sciences (from 17% to 21% of total usage) ¡  Social Sciences (from 3% to 18%). ¡ Roughly 95% of CHTC-delivered usage to these groups (including Open Science Grid hours) has been on high throughput compute systems. ¡ Another 4% has been on large-memory machines.

Slide 17

Slide 17 text

Christina Koch - HTCondor Week 2016 17 Summary ¡ Learn something about your users ¡  Identify common, basic problems ¡  Their problems à appropriate solutions ¡ Appreciate particularity ¡ Include non-technical, human solutions ¡ Watch your compute hours increase and diversify!

Slide 18

Slide 18 text

Christina Koch - HTCondor Week 2016 18 Questions?