ٕज़ख๏ͷΩϞͲ͜ʁ
3D-GAN
• z 200࣍ݩ ( p(x): Ұ༷ )
• 64x64x64ͷvoxelΛੜ
• DataSetʹ ShapeNet Λ༻
• Core: 55छྨ, 51,300Ϟσϧ
• Sem: ΑΓൣͳछྨͰৄࡉͳऍ͖, 12,000Ϟσϧ
• ֶश࣌ɺD ࣝผ͕80%ະຬͱ͖ʹ͔͠ߋ৽͠ͳ͍
z G(z) in 3D Voxel Space
512×4×4×4
256×8×8×8
128×16×16×16
64×32×32×32
Slide 5
Slide 5 text
ٕज़ख๏ͷΩϞͲ͜ʁ
3D-VAE-GAN: (2D image→3D object)
• VAE-GANΛࢀߟʹ2Dը૾Λ z ʹม͢Δ E Λಋೖ
L = L
3D-GAN
+ ↵
1
L
KL
+ ↵
2
L
recon
,
LKL = DKL(q(z|y) || p(z)),
Lrecon
= ||
G
(
E
(
y
))
x
||
2,
L3D-GAN = log D(x) + log(1 D(G(z)))
Slide 6
Slide 6 text
Ͳ͏ͬͯ༗ޮͩͱݕূͨ͠ʁ
• ModelNetͷ10, 40Ϋϥεྨ
• 3D-GANShapeNetͷ7छΛֶश
(chairs, sofas, tables, boats, airplanes, rifles, and cars)
3D Object Classification
Slide 7
Slide 7 text
Ͳ͏ͬͯ༗ޮͩͱݕূͨ͠ʁ
• IKEA dataset
• 2Dը૾ΑΓ3DମΛ෮ݩ
• viewpointͷमਖ਼ͳͲΞϥΠϯϝϯτΛ
ߦ͍ɺฏۉਫ਼Ͱൺֱ
Single Image 3D reconstruction