Slide 221
Slide 221 text
[21] Keiichi Osada, Kentaro Kutsukake, Jun Yamamoto, Shigeo Yamashita, Takashi Kodera, Yuta Nagai, Tomoyuki
Horikawa, Kota Matsui, Ichiro Takeuchi, and Toru Ujihara. Adaptive bayesian optimization for epitaxial growth
of si thin films under various constraints. Materials Today Communications, 25:101538, 2020.
[22] Carl Edward Rasmussen and Christopher KI Williams. Gaussian process for machine learning. MIT press, 2006.
[23] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out of the
loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.
[24] Jasper Snoek. Bayesian optimization and semiparametric models with applications to assistive technology.
PhD thesis, Citeseer, 2013.
[25] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. NeurIPS, 2012.
[26] Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki Karasuyama. Multi-objective
bayesian optimization using pareto-frontier entropy. ICML, 2020.
[27] Ami Takahashi and Taiji Suzuki. Bayesian optimization for estimating the maximum tolerated dose in phase i
clinical trials. Contemporary clinical trials communications, 21:100753, 2021.
[28] Kazuaki Toyoura, Daisuke Hirano, Atsuto Seko, Motoki Shiga, Akihide Kuwabara, Masayuki Karasuyama, Kazuki
Shitara, and Ichiro Takeuchi. Machine-learning-based selective sampling procedure for identifying the
low-energy region in a potential energy surface: A case study on proton conduction in oxides. Physical Review
B, 93(5):054112, 2016.
[29] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian optimization. ICML, 2017.
[30] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando De Freitas. Bayesian optimization in high
dimensions via random embeddings. IJCAI, 2013.
[31] Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Püschel. Active learning for multi-objective
optimization. International Conference on Machine Learning, 2013.
[32] 持橋大地, 大羽成征. ガウス過程と機械学習. 講談社, 2019.
[33] 須山敦志. ベイズ推論による機械学習入門. 講談社, 2017.
[34] 福水健次. カーネル法入門. 朝倉書店, 2010.
[35] 穂積祥太, 松井孝太, 沓掛健太朗, 宇治原徹, 竹内一郎. Level set estimation を用いた太陽電池用シリコンのレッ
ドゾーンの効率的推定. In 第 33 回人工知能学会 (JSAI) 全国大会, 2019.
松井 (名古屋大) 機械学習による適応的実験計画 151 / 151