Slide 1
Slide 1 text
@nyghtowl
Resources:
- An Introduction to Reinforcement Learning, Sutton & Barto 1998:
http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf
- Brief Survey of Deep Reinforcement Learning: https://arxiv.org/pdf/1708.05866.pdf
- David Silver’s RL Course: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Deep Reinforcement Learning: Pong from Pixels: http://karpathy.github.io/2016/05/31/rl/
- Computational Neuroscience Lab: http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
- Playing Atari with DRL: https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
- OpenAI Baselines: https://blog.openai.com/openai-baselines-dqn/
- Gridworld example: http://www.cs.ubc.ca/~poole/demos/mdp/vi.html
- TensorFlow without a PhD RL & Pong:
https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd/blob/master/tensorflow-rl-pong
- Kaggle Winning Solutions:
https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions/
- BigQuery Public Datasets: https://cloud.google.com/bigquery/public-data/